120 research outputs found

    Transient Simulation on Dynamic Response of Liquid Annular Seals

    Get PDF
    Transient change of the operating parameters has a serious influence on the stability of liquid annular seals. Take the liquid annular seals as a research object, a numerical method based on six-degree-of-freedom (6DOF) to analyze the dynamic response of liquid annular seals under gravity impact load. The variations of the force of liquid seal and pressure as well as the axis trajectory in time history are investigated. The influence of different sealing clearance, different liquid viscosity and different rotor speed is also studied. The results show that the maximum sealing pressure and sealing force of gravity direction will increase greatly in a very short time and then reduce rapidly. When sealing clearance increases, the displacement response amplitudes of axis trajectory, the maximum sealing force of gravity direction and maximum sealing pressure also increase. When liquid viscosity increases, the displacement response am plitudes of axis trajectory, the maximum sealing force of gravity direction and maximum sealing pressure decrease. We also found that different rotor speed has almost no influence on the maximum sealing force of gravity direction and maximum sealing pressure

    Crystal Structure of the MHC Class I Homolog MIC-A, a γδ T Cell Ligand

    Get PDF
    AbstractThe major histocompatibility complex (MHC) class I homolog MIC-A functions as a stress-inducible antigen that is recognized by a subset of γδ T cells independent of β2-microglobulin and bound peptides. Its crystal structure reveals a dramatically altered MHC class I fold, both in detail and overall domain organization. The only remnant of a peptide-binding groove is a small cavity formed as the result of disordering a large section of one of the groove-defining helices. Loss of β2-microglobulin binding is due to a restructuring of the interaction interfaces. Structural mapping of sequence variation suggests potential receptor binding sites on the underside of the platform on the side opposite of the surface recognized by αβ T cell receptors on MHC class I–peptide complexes

    Crystal Structure of a UBP-Family Deubiquitinating Enzyme in Isolation and in Complex with Ubiquitin Aldehyde

    Get PDF
    AbstractThe ubiquitin-specific processing protease (UBP) family of deubiquitinating enzymes plays an essential role in numerous cellular processes. HAUSP, a representative UBP, specifically deubiquitinates and hence stabilizes the tumor suppressor protein p53. Here, we report the crystal structures of the 40 kDa catalytic core domain of HAUSP in isolation and in complex with ubiquitin aldehyde. These studies reveal that the UBP deubiquitinating enzymes exhibit a conserved three-domain architecture, comprising Fingers, Palm, and Thumb. The leaving ubiquitin moiety is specifically coordinated by the Fingers, with its C terminus placed in the active site between the Palm and the Thumb. Binding by ubiquitin aldehyde induces a drastic conformational change in the active site that realigns the catalytic triad residues for catalysis

    Antitumor Activity of cGAMP via Stimulation of cGAS-cGAMP-STING-IRF3 Mediated Innate Immune Response

    Get PDF
    Immunotherapy is one of the key strategies for cancer treatment. The cGAS-cGAMP-STING-IRF3 pathway of cytosolic DNA sensing plays a pivotal role in antiviral defense. We report that the STING activator cGAMP possesses significant antitumor activity in mice by triggering the STING-dependent pathway directly. cGAMP enhances innate immune responses by inducing production of cytokines such as interferon-β, interferon-γ, and stimulating dendritic cells activation, which induces the cross-priming of CD8(+) T cells. The antitumor mechanism of cGAMP was verified by STING and IRF3, which were up-regulated upon cGAMP treatment. STING-deficiency dramatically reduced the antitumor effect of cGAMP. Furthermore, cGAMP improved the antitumor activity of 5-FU, and clearly reduced the toxicity of 5-FU. These results demonstrated that cGAMP is a novel antitumor agent and has potential applications in cancer immunotherapy

    Structural basis for concerted recruitment and activation of IRF-3 by innate immune adaptor proteins

    Get PDF
    Type I IFNs are key cytokines mediating innate antiviral immunity. cGMP-AMP synthase, ritinoic acid-inducible protein 1 (RIG-I)–like receptors, and Toll-like receptors recognize microbial double-stranded (ds)DNA, dsRNA, and LPS to induce the expression of type I IFNs. These signaling pathways converge at the recruitment and activation of the transcription factor IRF-3 (IFN regulatory factor 3). The adaptor proteins STING (stimulator of IFN genes), MAVS (mitochondrial antiviral signaling), and TRIF (TIR domain-containing adaptor inducing IFN-β) mediate the recruitment of IRF-3 through a conserved pLxIS motif. Here we show that the pLxIS motif of phosphorylated STING, MAVS, and TRIF binds to IRF-3 in a similar manner, whereas residues upstream of the motif confer specificity. The structure of the IRF-3 phosphomimetic mutant S386/396E bound to the cAMP response element binding protein (CREB)-binding protein reveals that the pLxIS motif also mediates IRF-3 dimerization and activation. Moreover, rotavirus NSP1 (nonstructural protein 1) employs a pLxIS motif to target IRF-3 for degradation, but phosphorylation of NSP1 is not required for its activity. These results suggest a concerted mechanism for the recruitment and activation of IRF-3 that can be subverted by viral proteins to evade innate immune responses

    Structural Basis of Substrate Selectivity of E. coli Prolidase

    Get PDF
    Prolidases, metalloproteases that catalyze the cleavage of Xaa-Pro dipeptides, are conserved enzymes found in prokaryotes and eukaryotes. In humans, prolidase is crucial for the recycling of collagen. To further characterize the essential elements of this enzyme, we utilized the Escherichia coli prolidase, PepQ, which shares striking similarity with eukaryotic prolidases. Through structural and bioinformatic insights, we have extended previous characterizations of the prolidase active site, uncovering a key component for substrate specificity. Here we report the structure of E. coli PepQ, solved at 2.0 Å resolution. The structure shows an antiparallel, dimeric protein, with each subunit containing N-terminal and C-terminal domains. The C-terminal domain is formed by the pita-bread fold typical for this family of metalloproteases, with two Mg(II) ions coordinated by five amino-acid ligands. Comparison of the E. coli PepQ structure and sequence with homologous structures and sequences from a diversity of organisms reveals distinctions between prolidases from Gram-positive eubacteria and archaea, and those from Gram-negative eubacteria, including the presence of loop regions in the E. coli protein that are conserved in eukaryotes. One such loop contains a completely conserved arginine near the catalytic site. This conserved arginine is predicted by docking simulations to interact with the C-terminus of the substrate dipeptide. Kinetic analysis using both a charge-neutralized substrate and a charge-reversed variant of PepQ support this conclusion, and allow for the designation of a new role for this key region of the enzyme active site

    Single Nucleotide Polymorphisms of Human STING Can Affect Innate Immune Response to Cyclic Dinucleotides

    Get PDF
    The STING (stimulator of interferon genes) protein can bind cyclic dinucleotides to activate the production of type I interferons and inflammatory cytokines. The cyclic dinucleotides can be bacterial second messengers c-di-GMP and c-di-AMP, 3'5'-3'5' cyclic GMP-AMP (3'3' cGAMP) produced by Vibrio cholerae and metazoan second messenger 2'5'-3'5' Cyclic GMP-AMP (2'3' cGAMP). Analysis of single nucleotide polymorphism (SNP) data from the 1000 Genome Project revealed that R71H-G230A-R293Q (HAQ) occurs in 20.4%, R232H in 13.7%, G230A-R293Q (AQ) in 5.2%, and R293Q in 1.5% of human population. In the absence of exogenous ligands, the R232H, R293Q and AQ SNPs had only modest effect on the stimulation of IFN-β and NF-κB promoter activities in HEK293T cells, while HAQ had significantly lower intrinsic activity. The decrease was primarily due to the R71H substitution. The SNPs also affected the response to the cyclic dinucleotides. In the presence of c-di-GMP, the R232H variant partially decreased the ability to activate IFN-βsignaling, while it was defective for the response to c-di-AMP and 3'3' cGAMP. The R293Q dramatically decreased the stimulatory response to all bacterial ligands. Surprisingly, the AQ and HAQ variants maintained partial abilities to activate the IFN-β signaling in the presence of ligands due primarily to the G230A substitution. Biochemical analysis revealed that the recombinant G230A protein could affect the conformation of the C-terminal domain of STING and the binding to c-di-GMP. Comparison of G230A structure with that of WT revealed that the conformation of the lid region that clamps onto the c-di-GMP was significantly altered. These results suggest that hSTING variation can affect innate immune signaling and that the common HAQ haplotype expresses a STING protein with reduced intrinsic signaling activity but retained the ability to response to bacterial cyclic dinucleotides
    corecore