38,695 research outputs found
Interpretations of Association Rules by Granular Computing
We present interpretations for association rules. We first introduce Pawlak's method, and the corresponding algorithm of finding decision rules (a kind of association rules). We then use extended random sets to present a new algorithm of finding interesting rules. We prove that the new algorithm is faster than Pawlak's algorithm. The extended random sets are easily to include more than one criterion for determining interesting rules. We also provide two measures for dealing with uncertainties in association rules
Heavy subgraphs, stability and hamiltonicity
Let be a graph. Adopting the terminology of Broersma et al. and \v{C}ada,
respectively, we say that is 2-heavy if every induced claw () of
contains two end-vertices each one has degree at least ; and
is o-heavy if every induced claw of contains two end-vertices with degree
sum at least in . In this paper, we introduce a new concept, and
say that is \emph{-c-heavy} if for a given graph and every induced
subgraph of isomorphic to and every maximal clique of ,
every non-trivial component of contains a vertex of degree at least
in . In terms of this concept, our original motivation that a
theorem of Hu in 1999 can be stated as every 2-connected 2-heavy and
-c-heavy graph is hamiltonian, where is the graph obtained from a
triangle by adding three disjoint pendant edges. In this paper, we will
characterize all connected graphs such that every 2-connected o-heavy and
-c-heavy graph is hamiltonian. Our work results in a different proof of a
stronger version of Hu's theorem. Furthermore, our main result improves or
extends several previous results.Comment: 21 pages, 6 figures, finial version for publication in Discussiones
Mathematicae Graph Theor
On path-quasar Ramsey numbers
Let and be two given graphs. The Ramsey number is
the least integer such that for every graph on vertices, either
contains a or contains a . Parsons gave a recursive
formula to determine the values of , where is a path on
vertices and is a star on vertices. In this note, we first
give an explicit formula for the path-star Ramsey numbers. Secondly, we study
the Ramsey numbers , where is a linear forest on
vertices. We determine the exact values of for the cases
and , and for the case that has no odd component.
Moreover, we give a lower bound and an upper bound for the case and has at least one odd component.Comment: 7 page
- …