60 research outputs found

    Multiscale modeling of thermal properties for graphene–polymer nanocomposites

    Get PDF

    Конструкція крила для покращення характеристик аеродинаміки та опору втомі

    Get PDF
    Робота публікується згідно наказу Ректора НАУ від 27.05.2021 р. №311/од "Про розміщення кваліфікаційних робіт здобувачів вищої освіти в репозиторії університету". Керівник роботи: професор, д.т.н. Карускевич Михайло ВіталійовичThis master thesis is dedicated to the development of the light aircraft wing, that allows reduction of the load on the wing by the means of automatical self-ajustable angle of attack, to improve aircraft stability, to extend parameters of the service life. Software FLUENT and ANSYS have been used in the work. The concept of new wing, its geometrical characteristics, results of calculations, recommendation on the application are presented in the work. The practical value of the work is the possibility to provide extended service life characteristics for light aircraft. The materials of the master's diploma can be used in the aviation industry and in the educational process of aviation specialties.Дана дипломна робота присвячена розробці крила легкого літака, яке дозволяє зменшити навантаження на крило літака за рахунок автоматичного саморегулювання кута атаки, покращити характеристики стійкості, підвищити ресурсні показники. В роботі було використано методи компьютерного проєктування та розрахунку, зокрема системи FLUENT та ANSYS. В роботі представлено концепцію нового крила, його геометричні характеристики, результати розрахунків, рекомендації по застосуванню результатів дослідження. Практичне значення результатів дипломної роботи магістра полягає в можливості забезпечення підвищених ресурсних характеристик легких літаків. Матеріали дипломної роботи магістра можуть бути використані в навчальному процесі та в практичній діяльності конструкторів спеціалізованих проєктних установ

    Decoupled measurement and modeling of interface reaction kinetics of ion-intercalation battery electrodes

    Full text link
    Ultrahigh rate performance of active particles used in lithium-ion battery electrodes has been revealed by single-particle measurements, which indicates a huge potential for developing high-power batteries. However, the charging/discharging behaviors of single particles at ultrahigh C-rates can no longer be described by the traditional electrochemical kinetics in such ion-intercalation active materials. In the meantime, regular kinetic measuring methods meet a challenge due to the coupling of interface reaction and solid-state diffusion processes of active particles. Here, we decouple the reaction and diffusion kinetics via time-resolved potential measurements with an interval of 1 ms, revealing that the classical Butler-Volmer equation deviates from the actual relation between current density, overpotential, and Li+ concentration. An interface ion-intercalation model is developed which considers the excess driving force of Li+ (de)intercalation in the charge transfer reaction for ion-intercalation materials. Simulations demonstrate that the proposed model enables accurate prediction of charging/discharging at both single-particle and electrode scales for various active materials. The kinetic limitation processes from single particles to composite electrodes are systematically revealed, promoting rational designs of high-power batteries

    Overpotential decomposition enabled decoupling of complex kinetic processes in battery electrodes

    Full text link
    Identifying overpotential components of electrochemical systems enables quantitative analysis of polarization contributions of kinetic processes under practical operating conditions. However, the inherently coupled kinetic processes lead to an enormous challenge in measuring individual overpotentials, particularly in composite electrodes of lithium-ion batteries. Herein, the full decomposition of electrode overpotential is realized by the collaboration of single-layer structured particle electrode (SLPE) constructions and time-resolved potential measurements, explicitly revealing the evolution of kinetic processes. Perfect prediction of the discharging profiles is achieved via potential measurements on SLPEs, even in extreme polarization conditions. By decoupling overpotentials in different electrode/cell structures and material systems, the dominant limiting processes of battery rate performance are uncovered, based on which the optimization of electrochemical kinetics can be conducted. Our study not only shades light on decoupling complex kinetics in electrochemical systems, but also provides vitally significant guidance for the rational design of high-performance batteries

    High-grade serous papillary ovarian carcinoma combined with nonkeratinizing squamous cell carcinoma of the cervix: a case report

    Get PDF
    Multiple primary malignant neoplasms are a rare gynecologic malignancy; particularly, cases originating from the heterologous organs, such as the ovary and cervix. Here, we report a case of two primary malignant neoplasms in a patient who had undergone laparoscopic radical hysterectomy + bilateral salpingo-oophorectomy + pelvic lymph node dissection + para-aortic lymphadenectomy + appendectomy + omentectomy + metastasectomy under general anesthesia. The patient experienced complete remission after six courses of postoperative chemotherapy with a standard Taxol and Carboplatin regimen. Genetic testing was performed to detect BRCA2 mutations, and poly (ADP-ribose) polymerase (PARP) inhibitors were used for maintenance therapy

    Optical bulk-boundary dichotomy in a quantum spin Hall insulator

    Full text link
    The bulk-boundary correspondence is a key concept in topological quantum materials. For instance, a quantum spin Hall insulator features a bulk insulating gap with gapless helical boundary states protected by the underlying Z2 topology. However, the bulk-boundary dichotomy and distinction are rarely explored in optical experiments, which can provide unique information about topological charge carriers beyond transport and electronic spectroscopy techniques. Here, we utilize mid-infrared absorption micro-spectroscopy and pump-probe micro-spectroscopy to elucidate the bulk-boundary optical responses of Bi4Br4, a recently discovered room-temperature quantum spin Hall insulator. Benefiting from the low energy of infrared photons and the high spatial resolution, we unambiguously resolve a strong absorption from the boundary states while the bulk absorption is suppressed by its insulating gap. Moreover, the boundary absorption exhibits a strong polarization anisotropy, consistent with the one-dimensional nature of the topological boundary states. Our infrared pump-probe microscopy further measures a substantially increased carrier lifetime for the boundary states, which reaches one nanosecond scale. The nanosecond lifetime is about one to two orders longer than that of most topological materials and can be attributed to the linear dispersion nature of the helical boundary states. Our findings demonstrate the optical bulk-boundary dichotomy in a topological material and provide a proof-of-principal methodology for studying topological optoelectronics.Comment: 26 pages, 4 figure

    Higher education research in China: Past, present, and prospect

    No full text
    corecore