384,709 research outputs found

    Chiral expansion of the π0→γγ\pi^0\rightarrow\gamma\gamma decay width

    Full text link
    A chiral field theory of mesons has been applied to study the contribution of the current quark masses to the π0→γγ\pi^0\rightarrow\gamma\gamma decay width at the next leading order. 2%2\% enhancement has been predicted and there is no new parameter.Comment: 9 page

    The Lyman <span class='mathrm'>α</span> and Lyman <span class='mathrm'>β</span> lines in solar coronal streamers

    Get PDF
    No abstract available

    The influence of reconstruction criteria on the sensitive probes of the symmetry potential

    Full text link
    Different criteria of constructing clusters and tracing back Δ\Delta resonances from the intermediate-energy neutron-rich HICs are discussed by employing the updated UrQMD transport model. It is found that both the phase-space and the coordinate-density criteria affect the single and the double neutron/proton ratios of free nucleons at small transverse momenta, but the influence becomes invisible at large transverse momenta. The effect of different methods of reconstructing freeze-out Δ\Deltas on the Δ0/Δ++\Delta^0/\Delta^{++} ratio is strong in a large kinetic energy region.Comment: 8 pages, 7 fig

    Difficulties in probing density dependent symmetry potential with the HBT interferometry

    Full text link
    Based on the updated UrQMD transport model, the effect of the symmetry potential energy on the two-nucleon HBT correlation is investigated with the help of the coalescence program for constructing clusters, and the CRAB analyzing program of the two-particle HBT correlation. An obvious non-linear dependence of the neutron-proton (or neutron-neutron) HBT correlation function (Cnp,nnC_{np,nn}) at small relative momenta on the stiffness factor γ\gamma of the symmetry potential energy is found: when γ≲0.8\gamma \lesssim 0.8, the Cnp,nnC_{np,nn} increases rapidly with increasing γ\gamma, while it starts to saturate if γ≳0.8\gamma \gtrsim 0.8. It is also found that both the symmetry potential energy at low densities and the conditions of constructing clusters at the late stage of the whole process influence the two-nucleon HBT correlation with the same power.Comment: 11 pages, 4 figure

    Uranium on uranium collisions at relativistic energies

    Get PDF
    Deformation and orientation effects on compression, elliptic flow and particle production in uranium on uranium collisions (UU) at relativistic energies are studied within the transport model ART. The density compression in tip-tip UU collisions is found to be about 30% higher and lasts approximately 50% longer than in body-body or spherical UU reactions. The body-body UU collisions have the unique feature that the nucleon elliptic flow is the highest in the most central collisions and remain a constant throughout the reaction. We point out that the tip-tip UU collisions are more probable to create the QGP at AGS and SPS energies while the body-body UU collisions are more useful for studying properties of the QGP at higher energies.Comment: 8 pages + 4 figure

    Excitation function of nucleon and pion elliptic flow in relativistic heavy-ion collisions

    Get PDF
    Within a relativistic transport (ART) model for heavy-ion collisions, we show that the recently observed characteristic change from out-of-plane to in-plane elliptic flow of protons in mid-central Au+Au collisions as the incident energy increases is consistent with the calculated results using a stiff nuclear equation of state (K=380 MeV). We have also studied the elliptic flow of pions and the transverse momentum dependence of both the nucleon and pion elliptic flow in order to gain further insight about the collision dynamics.Comment: 8 pages, 2 figure
    • …
    corecore