173 research outputs found

    High-Density Polyethylene and Heat-Treated Bamboo Fiber Composites: Nonisothermal Crystallization Properties

    Get PDF
    The effect of heat-treated bamboo fibers (BFs) on nonisothermal crystallization of high-density polyethylene (HDPE) was investigated using differential scanning calorimetry under nitrogen. The Avrami-Jeziorny model was used to fit the measured crystallization data of the HDPE/BF composites and to obtain the model parameters for the crystallization process. The heat flow curves of neat HDPE and HDPE/heat-treated BF composites showed similar trends. Their crystallization mostly occurred within a temperature range between 379 K and 399 K, where HDPE turned from the liquid phase into the crystalline phase. Values of the Avrami exponent (n) were in the range of 2.8~3.38. Lamellae of neat HDPE and their composites grew in a three-dimensional manner, which increased with increased heat-treatment temperature and could be attributed to the improved ability of heterogeneous nucleation and crystallization completeness. The values of the modified kinetic rate constant (KJ) first increased and then decreased with increased cooling rate because the supercooling was improved by the increased number of nucleating sites. Heat-treated BF and/or a coupling agent could act as a nucleator for the crystallization of HDPE

    Synthesis of 2D Ce-MOFs nanosheets and visiblelight-mediated decarboxylation performance

    No full text
    Two-dimensional Ce-MOFs nanosheets were successfully constructed by using ceric ammonium nitrate as metal salt and 1, 3, 5-tris(4-carboxyphenyl)benzene (H3BTB) as organic ligand, together with the use of acetic acid as modulator.Acetic acid modulator shows significant effects on the morphology and crystallinity of Ce-MOFs. Ce-MOFs microspheres synthesized without acetic acid as modulator (named Ce-BTB-H0) are composed of highly cross-linked small nanosheets with low crystallinity and surface areas. On the contrary, Ce-MOFs synthesized with acetic acid (named Ce-BTB-H60) consist of dispersed nanosheets, and show improved crystallinity and higher surface areas than that of Ce-BTB-H0. Using blue LED as light source and oxygen as oxidant, two-dimensional Ce-MOFs nanosheets enable decarboxylation oxygenation of a variety of substituted phenylacetic acid to their corresponding benzaldehydes and benzyl alcoholsunder irradiation of blue LED in oxygen atmosphere at room temperature.Moreover, Ce-BTB-H60nanosheets show better photocatalytic performance due to their higher crystallinity, larger specific surface area and improved dispersity than that of Ce-BTB-H0

    Water Absorption Properties of Heat-Treated Bamboo Fiber and High Density Polyethylene Composites

    No full text
    To modify water absorption properties of bamboo fiber (BF) and high density polyethylene (HDPE) composites, heat treatment of BFs was performed prior to compounding them with HDPE to form the composites. The moisture sorption property of the composites was measured and their diffusion coefficients (Dm) were evaluated using a one-dimensional diffusion model. Moisture diffusion coefficient values of all composites were in the range of 0.115x10-8 to 1.267x10-8 cm2/s. The values of Dm decreased with increasing BF heat-treatment temperature, and increased with increasing BF loading level. The Dm value of 40 wt% bamboo fiber/HDPE composites with BFs treated with 100 oC was the greatest (i.e., 1.267x10-8cm2/s). Morphology analysis showed increased fiber-matrix interfacial bonding damage due to fiber swelling and shrinking from water uptaking and drying. The mechanism of water absorption of the composite, indicated a general Fickian diffusion process

    Spatial-spectral radial basis function-based interpolation for Landsat ETM+ SLC-off image gap filling

    No full text
    The scan-line corrector (SLC) of the Landsat 7 ETM+ failed permanently in 2003, resulting in about 22% unscanned gap pixels in the SLC-off images, affecting greatly the utility of the ETM+ data. To address this issue, we propose a spatial-spectral radial basis function (SSRBF)-based interpolation method to fill gaps in SLC-off images. Different from the conventional spatial-only radial basis function (RBF) that has been widely used in other domains, SSRBF also integrates a spectral RBF to increase the accuracy of gap filling. Concurrently, global linear histogram matching is applied to alleviate the impact of potentially large differences between the known and SLC-off images in feature space, which is demonstrated mathematically in this article. SSRBF fully exploits information in the data themselves and is user-friendly. The experimental results on five groups of data sets covering different heterogeneous regions show that the proposed SSRBF method is an effective solution to gap filling, and it can produce more accurate results than six popular benchmark methods

    DataSheet_1_Prognostic value of TIGIT in East Asian patients with solid cancers: A systematic review, meta-analysis and pancancer analysis.pdf

    No full text
    BackgroundT-cell immunoreceptor with Ig and ITIM domains (TIGIT) participates in tumor immune escape by delivering inhibitory signals to T cells. The purpose of this article was to assess the prognostic value of TIGIT and its immunological function in solid cancers.MethodsThree databases were searched for relevant articles. The main endpoints were overall survival (OS), progression-free survival (PFS), recurrence-free survival (RFS), and disease-free survival (DFS). Hazard ratios (HR) were pooled by using fixed-effects or random-effects models. Pancancer analysis of TIGIT was performed based on public online databases, mainly The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and UCSC Xena. The possible relationships between TIGIT expression and the tumor microenvironment (TME), infiltration of immune cells, immune-related genes, tumor mutation burden (TMB), and microsatellite instability (MSI) were revealed in this article.ResultsSixteen studies met the inclusion criteria. High expression of TIGIT was associated with worse OS [HR= 1.73, 95% confidence interval (CI) 1.50, 1.99], PFS (HR = 1.53, 95% CI [1.25, 1.88]), RFS (HR = 2.40, 95% CI [1.97, 2.93]), and DFS (HR= 6.57, 95% CI [0.73, 59.16]) in East Asian patients with solid cancers. TIGIT expression was positively correlated with immune infiltration scores and infiltration of CD8 T lymphocytes in all of the cancers included. TIGIT was found to be coexpressed with the genes encoding immunostimulators, immunoinhibitors, chemokines, chemokine receptors, and major histocompatibility complex (MHC), especially in gastroesophageal cancer. TMB and MSI were also associated with TIGIT upregulation in diverse kinds of cancers.ConclusionHigh expression of TIGIT is associated with poorer prognosis in East Asian patients with solid cancers. TIGIT is a novel prognostic biomarker and immunotherapeutic target for various solid cancers because of its activity in cancer immunity and tumorigenesis.</p

    LuxR-Type Regulator AclR1 of Azorhizobium caulinodans Regulates Cyclic di-GMP and Numerous Phenotypes in Free-Living and Symbiotic States

    No full text
    LuxR-type regulators play important roles in transcriptional regulation in bacteria and control various biological processes. A genome sequence analysis showed the existence of seven LuxR-type regulators in Azorhizobium caulinodans ORS571, an important nitrogen-fixing bacterium in both its free-living state and in symbiosis with its host, Sesbania rostrata. However, the functional mechanisms of these regulators remain unclear. In this study, we identified a LuxR-type regulator that contains a cheY-homologous receiver (REC) domain in its N terminus and designated it AclR1. Interestingly, phylogenetic analysis revealed that AclR1 exhibited relatively close evolutionary relationships with MalT/GerE/FixJ/NarL family proteins. Functional analysis of an aclR1 deletion mutant (Delta aclR1) in the free-living state showed that AclR1 positively regulated cell motility and flocculation but negatively regulated exopoly-saccharide production, biofilm formation, and second messenger cyclic diguanylate (c-di-GMP)-related gene expression. In the symbiotic state, the Delta aclR1 mutant was defective in competitive colonization and nodulation on host plants. These results suggested that AclR1 could provide bacteria with the ability to compete effectively for symbiotic nodulation. Overall, our results show that the REC-LuxR-type regulator AclR1 regulates numerous phenotypes both in the free-living state and during host plant symbiosis.</p

    Characterization of Self-Powered Triboelectric Tachometer with Low Friction Force

    No full text
    Self-powered triboelectric tachometers have wide application prospects in mechanical and electrical industries. However, traditional disc-type tachometers typically require large contact force, which burdens rotary load and increases frictional wear. To reduce the friction force of triboelectric tachometers, we present an alternative structure defined by flapping between rigid and flexible triboelectric layers. In this work, we further characterize this type of tachometer, with particular focus on the oscillating relationship between output voltage and rotation speed due to the plucking mechanism. This oscillating relationship has been demonstrated both theoretically and experimentally. For future self-powered triboelectric tachometers, the proved oscillating relationship can be applied as calibration criteria for further enhancing sensitivity and linearity in rotation measurement

    Salt adaptability in a halophytic soybean (Glycine soja) involves photosystems coordination

    No full text
    Background Glycine soja is a halophytic soybean native to saline soil in Yellow River Delta, China. Photosystem I (PSI) performance and the interaction between photosystem II (PSII) and PSI remain unclear in Glycine soja under salt stress. This study aimed to explore salt adaptability in Glycine soja in terms of photosystems coordination. Results Potted Glycine soja was exposed to 300 mM NaCl for 9 days with a cultivated soybean, Glycine max, as control. Under salt stress, the maximal photochemical efficiency of PSII (Fv/Fm) and PSI (oMR/MR0) were significantly decreased with the loss of PSI and PSII reaction center proteins in Glycine max, and greater PSI vulnerability was suggested by earlier decrease in oMR/MR0 than Fv/Fm and depressed PSI oxidation in modulated 820 nm reflection transients. Inversely, PSI stability was defined in Glycine soja, as oMR/MR0 and PSI reaction center protein abundance were not affected by salt stress. Consistently, chloroplast ultrastructure and leaf lipid peroxidation were not affected in Glycine soja under salt stress. Inhibition on electron flow at PSII acceptor side helped protect PSI by restricting electron flow to PSI and seemed as a positive response in Glycine soja due to its rapid recovery after salt stress. Reciprocally, PSI stability aided in preventing PSII photoinhibition, as the simulated feedback inhibition by PSI inactivation induced great decrease in Fv/Fm under salt stress. In contrast, PSI inactivation elevated PSII excitation pressure through inhibition on PSII acceptor side and accelerated PSII photoinhibition in Glycine max, according to the positive and negative correlation of oMR/MR0 with efficiency that an electron moves beyond primary quinone and PSII excitation pressure respectively. Conclusion Therefore, photosystems coordination depending on PSI stability and rapid response of PSII acceptor side contributed to defending salt-induced oxidative stress on photosynthetic apparatus in Glycine soja. Photosystems interaction should be considered as one of the salt adaptable mechanisms in this halophytic soybean

    Experimental and Simulation Research on the Preparation of Carbon Nano-Materials by Chemical Vapor Deposition

    No full text
    Carbon nano-materials have been widely used in many fields due to their electron transport, mechanics, and gas adsorption properties. This paper introduces the structure and properties of carbon nano-materials the preparation of carbon nano-materials by chemical vapor deposition method (CVD)&mdash;which is one of the most common preparation methods&mdash;and reaction simulation. A major factor affecting the material structure is its preparation link. Different preparation methods or different conditions will have a great impact on the structure and properties of the material (mechanical properties, electrical properties, magnetism, etc.). The main influencing factors (precursor, substrate, and catalyst) of carbon nano-materials prepared by CVD are summarized. Through simulation, the reaction can be optimized and the growth mode of substances can be controlled. Currently, numerical simulations of the CVD process can be utilized in two ways: changing the CVD reactor structure and observing CVD chemical reactions. Therefore, the development and research status of computational fluid dynamics (CFD) for CVD are summarized, as is the potential of combining experimental studies and numerical simulations to achieve and optimize controllable carbon nano-materials growth
    • …
    corecore