32 research outputs found

    Rolling bearing fault diagnosis based on health baseline method

    Get PDF
    In order to excavate the relationship between the different features of the vibration signal, and to provide more useful information for the fault diagnosis of rolling bearings, this paper developed a new method of fault diagnosis-health baseline method and introduced the technological process of this method in detail. Through the case study, a health baseline based on two kinds of linear models was constructed. After testing, this method can distinguish the normal state of the rolling bearing, the external ring fault and the rolling element fault, which indicates that the method was feasible and effective for the fault diagnosis of the rolling bearing

    Flow Injection Chemiluminescent Immunoassay for Carcinoembryonic Antigen Using Boronic Immunoaffinity Column

    Get PDF
    A flow injection chemiluminescence immunoassay for rapid and sensitive detection of carcinoembryonic antigen (CEA) by using a phenylboronic acid-based immunoaffinity column as a glycoprotein collector was proposed in this paper. The column was prepared by coupling of 3-aminophenylboronic acid on the glass beads through a γ-glycidoxypropyltrimethoxysilane (GPMS) linkage. Based on an indirect competitive immunoreaction, the mixture of CEA sample and enzyme conjugated CEA antibody (HRP-anti-CEA) was incubated in advance, followed by direct injection to the column to capture free HRP-labeled CEA antibody in the column. The trapped HRP-labeled antibody was detected by flow inject chemiluminescence in the presence of luminol and hydrogen peroxide. The decreased chemiluminescent signal was proportional to the concentration of CEA in the range of 3.0–30.0 ng/mL with a correlation coefficient of 0.998. The column showed an acceptable reproducibility and stability and is potentially used for practical clinical detection of the serum CEA level

    Electrochemical Studies of the Inhibition and Activation Effects of Al (III) on the Activity of Bovine Liver Glutamate Dehydrogenase

    No full text
    Since the study of Al3+ ion on the enzyme activity by using of electrochemical techniques was rarely found in available literatures, the differential-pulse polarography (DPP) technique was applied to study the effects of Al3+ ion on the glutamate dehydrogenase (GDH) activity in the catalytical reaction of α-KG +NADH+NH4 + ⇔ L-Glu+NAD++H2O by monitoring the DPP reduction current of NAD+. At the plant and animal physiologically relevant pH values (pH=6.5 and 7.5), the GDH enzyme activities were strongly depended on the concentrations of the metal ion in the assay mixture solutions. In the lower Al (III) concentration solutions (<30 μM), the inhibitory effects were shown, which are in accordance with the recently biological findings. With the increase of Al (III) concentrations (30~80 μM), the enzyme GDH activities were activated. However, once the concentration of Al (III) arrived to near 0.1 mM level (>80μM), the inhibition effects of Al (III) were shown again. The cyclic voltammetry of NAD+ and NAD+-GDH in the presence of Al (III) can help to explain some biological phenomena. According to the differential-pulse polarography and cyclic voltammetry experiments, the present research confirmed that the electrochemical technique is a convenient and reliable sensor for accurate determination of enzyme activity in biological and environmental samples

    Ultrathin mesoporous NiCo2O4 nanosheets supported on Ni foam as advanced electrodes for supercapacitors

    No full text
    A facile two-step method is developed for large-scale growth of ultrathin mesoporous nickel cobaltite (NiCo2O4) nanosheets on conductive nickel foam with robust adhesion as a high-performance electrode for electrochemical capacitors. The synthesis involves the co-electrodeposition of a bimetallic (Ni, Co) hydroxide precursor on a Ni foam support and subsequent thermal transformation to spinel mesoporous NiCo2O4. The as-prepared ultrathin NiCo2O4 nanosheets with the thickness of a few nanometers possess many interparticle mesopores with a size range from 2 to 5 nm. The nickel foam supported ultrathin mesoporous NiCo2O4 nanosheets promise fast electron and ion transport, large electroactive surface area, and excellent structural stability. As a result, superior pseudocapacitive performance is achieved with an ultrahigh specific capacitance of 1450 F g−1, even at a very high current density of 20 A g−1, and excellent cycling performance at high rates, suggesting its promising application as an efficient electrode for electrochemical capacitors

    Expression of RNA-Interference/Antisense Transgenes by the Cognate Promoters of Target Genes Is a Better Gene- Silencing Strategy to Study Gene Functions in Rice

    Get PDF
    Antisense and RNA interference (RNAi)-mediated gene silencing systems are powerful reverse genetic methods for studying gene function. Most RNAi and antisense experiments used constitutive promoters to drive the expression of RNAi/antisense transgenes; however, several reports showed that constitutive promoters were not expressed in all cell types in cereal plants, suggesting that the constitutive promoter systems are not effective for silencing gene expression in certain tissues/ organs. To develop an alternative method that complements the constitutive promoter systems, we constructed RNAi and/ or antisense transgenes for four rice genes using a constitutive promoter or a cognate promoter of a selected rice target gene and generated many independent transgenic lines. Genetic, molecular, and phenotypic analyses of these RNAi/ antisense transgenic rice plants, in comparison to previously-reported transgenic lines that silenced similar genes, revealed that expression of the cognate promoter-driven RNAi/antisense transgenes resulted in novel growth/developmental defects that were not observed in transgenic lines expressing constitutive promoter-driven gene-silencing transgenes of the same target genes. Our results strongly suggested that expression of RNAi/antisense transgenes by cognate promoters of targe

    Experimental Investigation on the Machinability Improvement in Magnetic-Field-Assisted Turning of Single-Crystal Copper

    No full text
    The single-point diamond-turning operation is a commonly used method for ultra-precision machining of various non-ferrous materials. In this paper, a magnetic field was introduced into a single-point diamond-turning system, and magnetic-field-assisted turning experiments were carried out. The results revealed that the magnetic field affects the metal-cutting process in the form of the cutting force, chip morphology, and surface quality. Compared with traditional turning, magnetic-field assisted turning increases the cutting force by 1.6 times, because of the additional induced Lorentz force, and reduces the cutting-force ratio and friction coefficient on the rake surface by 16%, with the improved tribological property of the tool/chip contact-interface. The chip morphology in the magnetic-field-assisted turning shows the smaller chip-compression ratio and the continuous side-morphology. With the magnetoplasticity effect of the metal material and the friction reduction, magnetic-field-assisted turning is helpful for improving metal machinability and achieving better surface-quality

    Associated Fault Diagnosis of Power Supply Systems Based on Graph Matching: A Knowledge and Data Fusion Approach

    No full text
    With the rapid development of more-electric and all-electric aircraft, the role of power supply systems in aircraft is becoming increasingly prominent. However, due to the complex coupling within the power supply system, a fault in one component often leads to parameter abnormalities in multiple components within the system, which are termed associated faults. Compared with conventional faults, the diagnosis of associated faults is difficult because the fault source is hard to trace and the fault mode is difficult to identify accurately. To this end, this paper proposes a graph-matching approach for the associated fault diagnosis of power supply systems based on a deep residual shrinkage network. The core of the proposed approach involves supplementing the incomplete prior fault knowledge with monitoring data to obtain a complete cluster of associated fault graphs. The association graph model of the power supply system is first constructed based on a topology with characteristic signal propagation and the associated measurements of typical components. Furthermore, fault propagation paths are backtracked based on the Warshall algorithm, and abnormal components are set to update and enhance the association relationship, establishing a complete cluster of typical associated fault mode graphs and realizing the organic combination and structured storage of knowledge and data. Finally, a deep residual shrinkage network is used to diagnose the associated faults via graph matching between the current state graph and the historical graph cluster. The comparative experiments conducted on the simulation model of an aircraft power supply system demonstrate that the proposed method can achieve high-precision associated fault diagnosis, even under circumstances where there are an insufficient number of samples and missing parameters

    General Strategy for Designing Core–Shell Nanostructured Materials for High-Power Lithium Ion Batteries

    No full text
    Because of its extreme safety and outstanding cycle life, Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub> has been regarded as one of the most promising anode materials for next-generation high-power lithium-ion batteries. Nevertheless, Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub> suffers from poor electronic conductivity. Here, we develop a novel strategy for the fabrication of Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub>/carbon core–shell electrodes using metal oxyacetyl acetonate as titania and single-source carbon. Importantly, this novel approach is simple and general, with which we have successfully produce nanosized particles of an olivine-type LiMPO<sub>4</sub> (M = Fe, Mn, and Co) core with a uniform carbon shell, one of the leading cathode materials for lithium-ion batteries. Metal acetylacetonates first decompose with carbon coating the particles, which is followed by a solid state reaction in the limited reaction area inside the carbon shell to produce the LTO/C (LMPO<sub>4</sub>/C) core–shell nanostructure. The optimum design of the core–shell nanostructures permits fast kinetics for both transported Li<sup>+</sup> ions and electrons, enabling high-power performance
    corecore