207 research outputs found

    A2-RL: Aesthetics Aware Reinforcement Learning for Image Cropping

    Full text link
    Image cropping aims at improving the aesthetic quality of images by adjusting their composition. Most weakly supervised cropping methods (without bounding box supervision) rely on the sliding window mechanism. The sliding window mechanism requires fixed aspect ratios and limits the cropping region with arbitrary size. Moreover, the sliding window method usually produces tens of thousands of windows on the input image which is very time-consuming. Motivated by these challenges, we firstly formulate the aesthetic image cropping as a sequential decision-making process and propose a weakly supervised Aesthetics Aware Reinforcement Learning (A2-RL) framework to address this problem. Particularly, the proposed method develops an aesthetics aware reward function which especially benefits image cropping. Similar to human's decision making, we use a comprehensive state representation including both the current observation and the historical experience. We train the agent using the actor-critic architecture in an end-to-end manner. The agent is evaluated on several popular unseen cropping datasets. Experiment results show that our method achieves the state-of-the-art performance with much fewer candidate windows and much less time compared with previous weakly supervised methods.Comment: Accepted by CVPR 201

    Learning Deep Context-aware Features over Body and Latent Parts for Person Re-identification

    Full text link
    Person Re-identification (ReID) is to identify the same person across different cameras. It is a challenging task due to the large variations in person pose, occlusion, background clutter, etc How to extract powerful features is a fundamental problem in ReID and is still an open problem today. In this paper, we design a Multi-Scale Context-Aware Network (MSCAN) to learn powerful features over full body and body parts, which can well capture the local context knowledge by stacking multi-scale convolutions in each layer. Moreover, instead of using predefined rigid parts, we propose to learn and localize deformable pedestrian parts using Spatial Transformer Networks (STN) with novel spatial constraints. The learned body parts can release some difficulties, eg pose variations and background clutters, in part-based representation. Finally, we integrate the representation learning processes of full body and body parts into a unified framework for person ReID through multi-class person identification tasks. Extensive evaluations on current challenging large-scale person ReID datasets, including the image-based Market1501, CUHK03 and sequence-based MARS datasets, show that the proposed method achieves the state-of-the-art results.Comment: Accepted by CVPR 201

    How Does Adaptive Optimization Impact Local Neural Network Geometry?

    Full text link
    Adaptive optimization methods are well known to achieve superior convergence relative to vanilla gradient methods. The traditional viewpoint in optimization, particularly in convex optimization, explains this improved performance by arguing that, unlike vanilla gradient schemes, adaptive algorithms mimic the behavior of a second-order method by adapting to the global geometry of the loss function. We argue that in the context of neural network optimization, this traditional viewpoint is insufficient. Instead, we advocate for a local trajectory analysis. For iterate trajectories produced by running a generic optimization algorithm OPT, we introduce RmedOPTR^{\text{OPT}}_{\text{med}}, a statistic that is analogous to the condition number of the loss Hessian evaluated at the iterates. Through extensive experiments, we show that adaptive methods such as Adam bias the trajectories towards regions where RmedAdamR^{\text{Adam}}_{\text{med}} is small, where one might expect faster convergence. By contrast, vanilla gradient methods like SGD bias the trajectories towards regions where RmedSGDR^{\text{SGD}}_{\text{med}} is comparatively large. We complement these empirical observations with a theoretical result that provably demonstrates this phenomenon in the simplified setting of a two-layer linear network. We view our findings as evidence for the need of a new explanation of the success of adaptive methods, one that is different than the conventional wisdom

    Mixed Supervised Object Detection with Robust Objectness Transfer

    Get PDF
    In this paper, we consider the problem of leveraging existing fully labeled categories to improve the weakly supervised detection (WSD) of new object categories, which we refer to as mixed supervised detection (MSD). Different from previous MSD methods that directly transfer the pre-trained object detectors from existing categories to new categories, we propose a more reasonable and robust objectness transfer approach for MSD. In our framework, we first learn domain-invariant objectness knowledge from the existing fully labeled categories. The knowledge is modeled based on invariant features that are robust to the distribution discrepancy between the existing categories and new categories; therefore the resulting knowledge would generalize well to new categories and could assist detection models to reject distractors (e.g., object parts) in weakly labeled images of new categories. Under the guidance of learned objectness knowledge, we utilize multiple instance learning (MIL) to model the concepts of both objects and distractors and to further improve the ability of rejecting distractors in weakly labeled images. Our robust objectness transfer approach outperforms the existing MSD methods, and achieves state-of-the-art results on the challenging ILSVRC2013 detection dataset and the PASCAL VOC datasets.Comment: IEEE Transactions on Pattern Analysis and Machine Intelligence (2019). Together with Supplementary Materials. Note: The author list in Google Scholar is INCORRECT. The right author list is 1) Yan Li, 2) Junge Zhang, 3) Kaiqi Huang and 4) Jianguo Zhang. The official published version can be found in https://ieeexplore.ieee.org/abstract/document/830462

    Discriminative Learning of Latent Features for Zero-Shot Recognition

    Get PDF
    Zero-shot learning (ZSL) aims to recognize unseen image categories by learning an embedding space between image and semantic representations. For years, among existing works, it has been the center task to learn the proper mapping matrices aligning the visual and semantic space, whilst the importance to learn discriminative representations for ZSL is ignored. In this work, we retrospect existing methods and demonstrate the necessity to learn discriminative representations for both visual and semantic instances of ZSL. We propose an end-to-end network that is capable of 1) automatically discovering discriminative regions by a zoom network; and 2) learning discriminative semantic representations in an augmented space introduced for both user-defined and latent attributes. Our proposed method is tested extensively on two challenging ZSL datasets, and the experiment results show that the proposed method significantly outperforms state-of-the-art methods.Comment: CVPR 2018 (Oral
    • …
    corecore