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Mixed Supervised Object Detection with Robust
Objectness Transfer

Yan Li, Student Member, IEEE, Junge Zhang, Member, IEEE, Jianguo Zhang, Senior Member, IEEE
Kaiqi Huang*, Senior Member, IEEE,

Abstract—In this paper, we consider the problem of leveraging existing fully labeled categories to improve the weakly supervised
detection (WSD) of new object categories, which we refer to as mixed supervised detection (MSD). Different from previous MSD methods
that directly transfer the pre-trained object detectors from existing categories to new categories, we propose a more reasonable and
robust objectness transfer approach for MSD. In our framework, we first learn domain-invariant objectness knowledge from the existing
fully labeled categories. The knowledge is modeled based on invariant features that are robust to the distribution discrepancy between
the existing categories and new categories; therefore the resulting knowledge would generalize well to new categories and could assist
detection models to reject distractors (e.g., object parts) in weakly labeled images of new categories. Under the guidance of learned
objectness knowledge, we utilize multiple instance learning (MIL) to model the concepts of both objects and distractors and to further
improve the ability of rejecting distractors in weakly labeled images. Our robust objectness transfer approach outperforms the existing
MSD methods, and achieves state-of-the-art results on the challenging ILSVRC2013 detection dataset and the PASCAL VOC datasets.

Index Terms—Weakly supervised detection, Mixed supervised detection, Robust objectness transfer.

F

1 INTRODUCTION

R ECENTLY, object detection has been improved drasti-
cally in performance and scale with the development

of convolutional neural networks (CNNs) [1], [2], [3], [4],
[5] and the introduction of benchmarking detection datasets
(e.g., PASCAL VOC [6], MS COCO [7] and ILSVRC2013
detection dataset [8]). The supervised training process of
state-of-the-art object detectors requires a large number
of fully labeled images with bounding box annotations.
However, the bounding box annotations are very difficult
to acquire; thus supervised training of a high-performance
detector at such a scale is not feasible, when we need to deal
with hundreds of thousands of new objects in real-world
applications.

On the other hand, weakly labeled data (i.e., object cate-
gories with image labels only) are relatively easier to obtain
either manually or through search engine. The problem of
learning a detector on images with such weak labels is
called weakly supervised detection (WSD). It is often formu-
lated as a multiple instance learning (MIL) problem [9], in
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the National Natural Science Foundation of China (Grant 61673375,
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Fig. 1. Failure examples of weakly supervised detection†. The weakly
supervised detection tends to confuse the objects (cat, boat) with the
co-occurring distractors (cat face, water ).

which each image is used as a bag of regions. However,
unfortunately, the clear definition of instances for object
regions is missing in such formulation. As illustrated in
Fig. 1, WSD tends to confuse the objects with co-occurring
distractors (context or object part) [10], [11], [12], [13], [14],
[15], [16]. Those co-occurring distractors are in principle
perfectly valid positive instances considering the image class
labels only, though not the actual object being sought, for
example boat vs. boat with water and “whole cat” vs. “cat face”.
The key issue in weakly supervised setting is that WSD
trains an object detector by optimizing objective functions
for an image-level classification instead of the region-level
detection. Considering a typical case when both “whole cat”
region and “cat face” region present in many positive cat
images but do not appear in negative images, WSD cannot
distinguish the two regions and is also likely to select “cat
face” region as the desired cat region, as either of them could
distinguish cat from other categories. Such an incapability

†. The results are obtained using our implementation of WSDDN [10].
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of distinguishing the objects from distractors leads to lots of
false detections and limits the detection performance. This
pitfall is inherent in current weakly supervised setting.

However we argue that the pitfall could be better ad-
dressed by building detectors over a mixed set of images
with strong labels (i.e., bounding box annotations) and weak
labels (i.e., image-level labels); we call such a problem mixed
supervised detection (MSD). The mixed supervised learning
offers two key advantages: 1) limiting the amount of anno-
tations due to the use of weak labels; 2) leveraging fully
labeled public datasets to assist training on weak labels. For
simplicity and clarity, in the following we term the object
categories with bounding box annotations as strong cate-
gories, while the categories with image-level annotations
only are called weak categories. We would like to highlight
that, different from semi-supervised detection [17], [18],
[19], strong categories in mixed supervised detection have
NO overlap with weak categories, i.e., objects in the weak
categories are novel categories w.r.t. the strong categories.
The trained detector is expected to detect an object instance
from one of those novel categories in an unseen image.
Thus MSD is a more challenging problem. The existing
MSD methods [20], [21], [22], [23] utilize a straightforward
pipeline that directly transfers the object detectors learned
on strong categories to weak categories following some
hand-crafted strategies. We argue that a better approach to
solve MSD should be capable of 1) learning strong domain-
invariant knowledge from strong categories and 2) robustly
transferring the learned knowledge to weak categories.

In this paper, we propose a robust objectness transfer ap-
proach for mixed supervised learning. In our approach, we
first aim to learn domain-invariant objectness knowledge
from strong categories with CNN models. The objectness
knowledge learned from annotated boxes of strong cate-
gories could facilitate rejecting the distractors in weakly
labeled images. Meanwhile, the unlabeled regions from
weak categories are utilized to make the learned objectness
generalize well to new categories. Concretely, we cast the
learning of objectness as a domain adaptation problem,
considering the strong categories as our source domain, and
the weak categories as our target domain. The objectness
model is trained with the embedding representations where
both strong and weak categories are indistinguishable. Thus
the learned objectness will be invariant to the change of
domains (from strong to weak categories). The domain-
invariant objectness has two important characteristics: 1)
category independent, to generalize well to unseen cate-
gories and 2) object sensitive, to reliably reject distractors
in weak categories. We believe that such knowledge is
appropriate for mixed supervised detection scenarios. After
that, the objectness knowledge is applied to separate the
objects and distractors in weak categories and a simple way
is to use the separated objects as pseudo ground truths
to train object detectors on weak categories. However, we
believe that the difference between objects and distractors in
weak categories can be better modeled by a further learning
process. Specifically, we consider the separated objects and
distractors as “object bag” and “distractor bag” and aim
to model the concepts of objects and distractors under
a standard multiple instance learning (MIL) framework.
Finally, with the improved object and distractor concepts,

the detection model is capable of distinguishing the ground
truth objects from distractors, and leads to much better
performance.

In summary, our contributions are three-fold:

• A robust objectness transfer approach is proposed
for MSD. Different from previous MSD methods that
directly transfer pre-trained object detectors from
strong to weak categories with hand-crafted strate-
gies, our method automatically learns the domain-
invariant knowledge by incorporating weak cate-
gories into the knowledge learning process.

• We design a MIL-based framework to further model
the difference between objects and distractors and to
improve the ability of reliably rejecting distractors in
weakly labeled images.

• The proposed method outperforms both the state-of-
the-art MSD methods and the baselines on the chal-
lenging ILSVRC2013 detection and PASCAL VOC
2007, 2010, 2012 datasets.

2 RELATED WORK

2.1 Weakly Supervised Detection
To reduce the annotation cost in object detection, weakly
supervised detection (WSD) methods [10], [11], [12], [13],
[14], [15], [16], [24], [25], [26], [27] attempt to learn object
detectors using only image category labels. In weakly su-
pervised setting, the optimization of WSD methods is an
image-level classification instead of the required region-
level detection, thus the WSD methods tend to select distrac-
tors (local optima) and their performance strongly depends
on the initialization. Song et al. [16] and Wang et al. [27]
use clustering method to obtain better initializations. Cinbis
et al. [13], [14] propose a multi-fold training strategy of
MIL to avoid the local optima: the dataset is split into 10
subsets. When selecting high-score proposals from a subset,
the detectors trained on other subsets are used. Bilen et al.
[11] propose a smoothed version of MIL where soft labels
are related to the region proposals instead of choosing the
ones with highest confidence. WSDDN [10] utilizes a two-
stream architecture to train the recognition model and to
select the discriminative regions in parallel to avoid using
the recognition model itself to select high confident regions,
which is able to relieve the local optima phenomenon. Based
on WSDDN, Kantorov et al. [25] propose to utilize the
context information to reject distractors and obtain more
reliable detections. While these approaches are promising,
the local optima problem has not yet been solved. The
performance of WSD methods is still far from acceptable.

2.2 Mixed Supervised Detection
To learn well-performing object detectors with image cat-
egory labels, several methods aim to utilize fully labeled
data of different categories (strong categories) to improve
the detection performance on the weakly labeled categories
(weak categories), which is referred to as mixed supervised
detection (MSD). Shi et al. [28] propose to learn a rank model
on strong categories based on the appearance similarity.
Then the rank model is transferred to weak categories to
select the top-ranked regions as objects. Guillaumin and
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Ferrari [29] conduct the MSD on ImageNet [8]. By exploiting
the semantic hierarchy of ImageNet, the key idea in [29]
is to localize objects of a weak category by transferring
knowledge from its ancestor and sibling strong categories.
Hoffman et al. [20] propose a Large Scale Object Detection
through Adaptation (LSDA) algorithm to address the MSD
problem. In their method, the classifier and detector differ-
ences are learned on strong categories and then transferred
from several “similar” strong categories to a weak catego-
ry. The weak category applies the transferred differences
to adjust its classifier to corresponding object detector. In
[21], Hoffman et al. utilize the same strategy to adapt the
intermediate representations from strong to weak categories
and then solve a standard MIL problem on weak categories
based on transferred representations. Recently, Tang et al.
[23] propose a Large Scale Semi-supervised Object Detection
(LSSOD) method to improve the LSDA. LSSOD follows the
same approach in LSDA but selects the “similar” categories
by considering more informed visual and semantic simi-
larities. In LSDA-based methods, both classifiers and object
detectors are trained with 8-layer AlexNet model [30], and
the parameters of layers 1-7 are the same for all categories
in the models. Thus LSDA has to assume as a prior that the
differences learned on layers 1-7 are category-invariant (note
they are not learned to achieve category-invariance as what
we do in this paper), those differences learned on strong
categories are directly applied to weak categories. However,
when the distribution discrepancy between strong and weak
categories becomes significant, this assumption is no longer
valid and the detection performance will be weakened
greatly. Rocha et al. [22] propose a method called Weakly Su-
pervised Localization Using Appearance Transfer (WSLAT)
to solve the MSD based on semantic knowledge. In WSLAT,
the strong and weak categories are represented as fixed
length vectors (called “word embedding”) [31]. Then the
object detectors can be transferred from one category to
another based on their semantic relationship. However, the
semantic information is still an indirect measurement of
complex object categories. The transferred detectors cannot
obtain good performance in their method. In contrast, our
model learns more robust and transferable objectness to
support the learning of WSD on weak categories, which is
able to effectively relieve the impacts caused by distribution
discrepancy between strong and weak categories. Recently,
Shi et al. [32] propose a new mixed supervised learning
setting, where the auxiliary fully labeled annotations cor-
respond to the pixel-level segmentation annotations and the
knowledge is learned from the segmentation models.

2.3 Objectness Knowledge

Learning objectness knowledge to improve the detection
performance has been explored by many previous works
[33], [34], [35], [36]. Most of them measure objectness with
low-level cues such as saliency [33], contour information
[36] and hierarchical superpixels [35]. These approaches are
“class-agnostic” and can be applied to new categories. How-
ever, the ability of these objectness knowledge is limited due
to their incapabilities of capturing high-level cues. In fact,
some high-level cues are also beneficial to detecting objects.
For example, many animal object categories might share the

same high-level structures (limbs around the body). Detect-
ing such structures could infer to the presence of objects,
but it is difficult to learn such high-level structures with low-
level information only. Based on this consideration, learning
objectness from annotated images with deep CNN models
is likely to perform better, and such CNN-based objectness
knowledge has already been explored by DeepBox [34].
With a large number of annotated images, DeepBox aims to
let CNN model itself figure out what low-, mid- and high-
level object cues are most discriminative and it achieves
promising results in fully supervised detection scenario.
However, such CNN-based approach is not appropriate for
our MSD task. Since the objectness in DeepBox is learned on
strong categories and directly applied to different categories
without considering the distribution discrepancy problem.
It would decrease the performance of DeepBox on new
categories, especially when the available strong categories
is limited. Different from previous objectness methods, our
domain-invariant deep objectness model is the first work
that incorporates the domain invariance into the CNN-
based objectness method, which makes it possible to obtain
sufficient objectness from existing annotated categories and
to transfer the knowledge to new categories well.

3 TASK DEFINITION

In the mixed supervised learning case, we assume that we
already have a set of fully labeled categories, which is called
“strong categories” and denoted as S . Meanwhile we have
some weakly labeled categories called “weak categories”,
denoted as W . Both bounding box annotations and image-
level labels are available for set S ; for set W , we only
have access to their image category labels. In our detection
scenario, the strong categories and weak categories have no
overlap. This is quite different from the “mixed supervised
learning” explored in Cinis’s work [14], which actually
belongs to semi-supervised learning where typically a small
amount of fully labeled data with a large amount of weakly
labeled data are provided for the same category.

4 METHOD

Our robust objectness transfer framework is illustrated in
Fig. 2. We first learn domain-invariant objectness knowledge
to assist the weakly supervised learning on weak categories.
During the learning of objectness, the annotated boxes from
strong categories are used to train the objectness predictor.
Meanwhile, the unlabeled boxes from weak categories are
also applied to learn a domain classifier, and the gradients
from the domain classifier are reversed to achieve the do-
main invariance. The learned objectness is firstly utilized to
roughly distinguish the objects and distractors and then a
MIL-based approach is used to further model the difference
between the objects and distractors. Finally, the detection
model is able to recognize the distractor category in addition
to object categories and learn that these confused distractors
are false detections.

4.1 Learning Domain-invariant Objectness
In our approach, we aim to model the objectness knowledge
using CNN-based method, and the objectness model is di-
rectly trained on the bottom-up proposals that are generated
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Fc8 (K+1 categories)
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Fig. 2. The proposed robust objectness transfer approach for MSD. During the learning of objectness, the annotated boxes from fully labeled
categories (“strong” categories, e.g. cat) are used to train the objectness predictor; meanwhile, the unlabeled regions from weakly labeled categories
(“weak” categories, e.g. dog) are also applied to learn a domain classifier. During training, the gradients from the domain classifier are reversed to
make the feature f invariant to the change of categories. The learned objectness is firstly utilized to roughly distinguish the objects and distractors
and then a MIL-based approach is used to further model the difference between the objects and distractors.

by selective search [35]. By leveraging the bounding box
annotations in strong categories, we cast the learning of
objectness as a binary classification task: considering the
regions that largely overlap with the ground truth boxes
as the “objects” and the regions with smaller overlaps as
“non-objects”. We aim to let CNN models to automatically
figure out beneficial cues for learning “objectness”. During
training, the images as well as a set of region proposals
are fed to several convolutional layers, the RoI pooling
layer [2] and fully-connected (fc) layers. Each region ri is
finally mapped to a 256-dimensional vector fi ∈ R256 (i.e.,
feature f in Fig. 2), which can be considered as the internal
representations for input regions. Then the fi is connected
to two branches.

The first branch is the objectness predictor, denoted
as Gobj . Gobj consists of fc layers and predicts from fi
whether a region ri is an object or not. As bounding box
annotations are required to separate object regions and non-
object regions in an image, only regions from set S are used
to train the objectness predictor. The binary logistic loss can
be used:

Lobj(w) = − 1

n

n∑
i=1

[yobji log(pi)+ (1− yobji ) log(1− pi)] (1)

where pi = 1
1+exp(−Gobj(fi))

is the posterior probability
that a region ri belongs to “objects”. The regions whose
intersection-over-union (IoU) with any ground truth object
is no less than 0.5 are considered as positive examples, i.e.,
yobji = 1; the regions that have a maximum IoU with ground
truth in the interval [0.1, 0.5) are negative examples, i.e.,
yobji = 0. Additionally, we balance the ratio of positive
and negative samples in each image to 1:3 as the number
of negative examples is far more than the positive ones.

Such objectness is trained on set S and cannot be ex-
tended to set W well, since the statistical distributions of
categories in the two sets are different. Thus, we need to
make the objectness learned on set S generalize well on
set W . Inspired by [37], [38], in our approach, we cast
the learning of objectness as a domain adaptation problem

where set S and W can be considered as source and target
domain respectively, and the domain invariance is achieved
by connecting a second branch to feature f , which we call
domain classifier branch, as shown in Fig. 2 and denoted as
Gdom.

Different from the objectness predictor, the domain clas-
sifier receives regions from both set S and setW to predict
the origin of the input regions (S or W). It is also a binary
classification task and the optimization objective used is
similar to the objectness predictor Gobj :

Ldom(w) = − 1

n

n∑
i=1

[ydomi log(pi) + (1− ydomi ) log(1− pi)]

(2)
where pi = 1

1+exp(−Gdom(fi))
is the probability that a

region ri belongs to set S . In this domain classification task,
the regions sampled from set S are positives, i.e., ydomi = 1;
the regions sampled from setW are negatives, i.e., ydomi = 0.

During the forward propagation, the domain classifier
proceeds standardly and calculates Ldom. While in the back-
ward propagation process, the gradients from the domain
classifier are reversed (multiplied by -1) before passed to
f . With this gradient reversal operator, the network actu-
ally maximizes Ldom during the training process, which
results in the incapability of modeling the discriminative
information between two domains, i.e., makes the internal
representations f as indistinguishable as possible (domain-
invariant) for both domains. In our objectness model, do-
main invariance is achieved by learning objectness Gobj(f)
with such domain-invariant representations f , which thus
could be well transferred to target domains with unseen
objects. ‡

At each training iteration, for objectness predictor, 64
annotated regions are sampled from set S to learn the
objectness and the ratio of positives and negatives are bal-
anced to 1:3. Meanwhile, for domain classifier, 64 unlabeled
regions are randomly sampled from set W . It should be

‡. We refer the readers to the theoretical proof of the gradient reversal
strategy in [38].
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noticed that directly utilizing 64 “balanced” regions of set
S and 64 “random” regions from set W to achieve domain
invariance is inappropriate, since the data distribution of set
S has already been changed with the balancing process. To
address this issue, we randomly sample another 64 regions
from set S to train the domain classifier together with the
regions of set W . Finally, each training mini-batch contains
192 samples, including 64 “balanced” regions sampled from
set S , another 64 “random” regions sampled from set S and
64 “random” regions sampled from set W . Note that the
image-level labels are not used in this process. The detailed
training strategy is described in Step 1 of Algorithm 1.

Algorithm 1 Robust Objectness Transfer Approach for MSD
Input: strong set S and its region proposals Rs

weak setW and its region proposals Rw

Objectness model Obj with parametersWo

Objectness-aware detection model Det with param-
etersWd

max iteration maxiterobj and maxiterdet
Step 1: Domain-invariant Objectness Learning
InitializeWo

for iter = 1; iter < maxiterobj; ++iter do
Sample 64 “balanced” regions from Rs

Calculate objectness prediction loss using (1)
Propagate the gradients
Sample 64 “random” regions from Rs

Sample 64 “random” regions from Rw

Calculate domain classification loss using (2)
Propagate the reversed gradients
UpdateWo

end for
Step 2: Objectness-aware Detection
InitializeWd

for iter = 1; iter < maxiterdet; ++iter do
Sample one image x fromW
Scoring its region proposals R with Obj
Object bag Bobj ← the top 15% regions of R
Distractor bag Bdis ← the last 85% regions of R
Calculating the Loss using (6)
UpdateWd

end for

Output: Detection model’s parameterWd

4.2 Objectness-aware Detection Model

After the objectness knowledge is learned, it is used to sep-
arate the objects and distractors in weakly labeled images
of set W . In our approach, for each weakly labeled image,
its region proposals are firstly fed to the learned objectness
model to get their “objectness” scores (i.e., the outputs of
objectness predictor in Fig. 2), and then sorted according to
the scores. The top m% (m is set to 15 in our algorithm)
proposals are selected as the “object regions”, and the rest
1-m% ones are used as “distractor regions”. A simple way to
utilize the selected object regions is to consider these regions
as pseudo ground truth and then train fully supervised de-
tectors. But it is not a well-performing approach since such

separation between objects and distractors is not prominent.
To address this issue, we aim to further model the difference
between objects and distractors based on a multiple instance
learning (MIL) approach and propose the objectness-aware
detection model.

In MIL framework, we first construct the “object bag”
with “object regions” and the “distractor bag” with “distrac-
tor regions” for each weakly labeled image in set W . The
labels for these bags are denoted as y ∈ {−1, 1}K+1. The
“distractor bags” are tagged with y0 = 1 while the “object
bags” are labeled as their corresponding object categories
(yk = 1, k > 0).

Then we adopt the Fast R-CNN framework for the
objectness-aware detection model. During training, a weak-
ly labeled image x as well as its region proposals R that
are generated by selective search are imported as the input
of the network (each image x contains two bags: the object
bag and the distractor bag). The network simultaneously
computes features for each proposal and finally maps the
features to K+1-dimensional vectors sR ∈ R(K+1)×|R|,
which represent the classification scores for regions. These
region-level scores are directly used to evaluate the detec-
tion performance at testing time.

During training, regions in the bag cannot be labeled
since we do not have bounding box annotations. Thus the
region-level scores sR need to be aggregated to a bag-level
classification score sB to train the model. In traditional MIL
settings, the highest region-level score is selected as the bag-
level score:

sB = max
r

(sRr ). (3)

This max operator utilizes only one region per bag as the
positive sample. To relax this restriction, we use “exp-sum-
log” operator proposed in [11] to serve as a soft approxima-
tion for the max operator:

sB = log

 |R|∑
r

exp
(
sRr

). (4)

After obtaining the bag-level scores sB , we utilize the
sigmoid function to compute the posterior probability that
each bag Bi belongs to the k-th class:

pki =
1

1 + exp(−sBki)
. (5)

Finally, the network can be trained end-to-end using
cross-entropy loss:

L(w) =
λ

2
‖w‖22−

1

n

n∑
i=1

K+1∑
k=1

(1{yki = 1} log (pki)) (6)

where yi ∈ {−1, 1}K+1 is the bag-level labels, and 1{·}
is the indicator function. λ is the weight decay parameter on
the weight w of CNNs used to improve the generalization of
the model and is set to 0.0005 in all experiments. Using this
MIL-based approach, the objectness-aware detection model
is able to model the concepts of both distractors and K
object categories. Finally, with the learned distractor concept,
our method is able to reliably reject the distractors in images
and significantly improve the detection performance on set
W . The overall approach is summarized in Algorithm 1.
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TABLE 1
The summaries of Ours-MSD and three baselines. The contents in parentheses indicate the architectures of the models, i.e., Alexet or VGG16.

Method Learning the knowledge from set S Traning detectors on setW
Ours-MSD domain-invariant objectness model (VGG16) objectness-aware detection model (AlexNet/VGG16)
B-WSD - standard MIL-based WSD model (AlexNet/VGG16)
B-MSD fully supervised Fast RCNN detector (VGG16) standard MIL-based WSD model (VGG16)
OOM-MSD original objectness model (VGG16) objectness-aware detection model (AlexNet)

5 EXPERIMENTS

The proposed MSD method is evaluated on both intra-
dataset detection task (Section 5.2) and cross-dataset detec-
tion task (Section 5.3). We use two metrics for evaluation:
mAP and CorLoc. Mean Average Precision (mAP) is the
evaluation metric to test our model on the test set, which
follows the standard PASCAL VOC protocol [6]. Correct
localization (CorLoc) is to test the proposed model on the
training set measuring the localization accuracy [39]. CorLoc
is the percentage of images for which the most confident
detected bounding box overlaps (IoU ≥ 0.5) with a ground
truth box.

5.1 Baselines
In this section, we first introduce three baseline methods to
compare with our robust objectness transfer MSD approach.
For simplicity, we term our robust objectness transfer MSD
approach as Ours-MSD in the following sections.

B-WSD (the Baseline Weakly Supervised Detection
method). This baseline is a standard MIL-based WSD
method, which is trained on setW only and does not utilize
the objectness knowledge. Specially, in B-WSD, all regions
in an image construct an image bag tagged with its object
category label. During training, B-WSD only aims to model
the concepts of K object categories and the loss function in
(6) is adapted to sum over K categories.

B-MSD (the Baseline Mixed Supervised Detection
method). In Ours-MSD, the objectness knowledge is first
modelled on set S and then transferred to setW to learn the
objectness-aware detection model. In B-MSD, we utilize a
straightforward fine-tuning approach to transfer the knowl-
edge of detection task from set S to set W . We first train
a fully supervised Fast RCNN detector on set S . Then we
fine tune the obtained detector on setW under a MIL-based
WSD framework. That is, we train a B-WSD model on set
W initialized using the fully supervised detector.

OOM-MSD (the Original Objectness Model for Mixed
Supervised Detection). Similar to Ours-MSD, the OOM-
MSD also utilizes objectness knowledge to separate the
objects and distractors and then trains objectness-aware
detection model. The difference lies in the architecture of
the objectness model. In OOM-MSD, the domain adaptation
component of the objectness model (i.e., the domain classi-
fier branch in Fig. 2) is removed and the orginial objectness
knowledge is learned from set S only.

5.2 Intra-dataset Detection
5.2.1 Benchmark Data
In the intra-dataset detection case, we evaluate our method
on the PASCAL VOC 2007 [6] dataset and the ILSVRC2013

detection [8] dataset.
The PASCAL VOC 2007 dataset contains 20 common

object classes, 2,501 training images, 2,510 validation images
and 5,011 test images. To train the objectness models and
objectness-aware WSD models, we split the trainval set
(5,011 images in total) into two sets: images belonging to the
first 10 categories of PASCAL constitute set S and images of
the last 10 categories construct the set of weak categories
(set W). The strong set S includes 3,002 images. We have
access to their bounding box annotations and model object-
ness knowledge from these annotated boxes. The weak set
W contains 3,340 weakly labeled images, which are used
to train objectness-aware detection models. The detection
models are evaluated on test set and the mAP is computed
over the last 10 categories.

The ILSVRC2013 detection dataset contains 200 basic
level object cateogories, 395,909 images for training, 20,121
images for validation, and 40,152 images for testing. The
validation set is split in half: val1 and val2, as in R-CNN [3].
Then we collect images with bounding box annotations from
both train and val1 to construct our training set, trainval1
(107,452 images in total). Similar to PASCAL VOC, we also
split the trainval1 set into two sets: the first 100 and the
last 100 categories (in alphabetical order) correspond to
the strong categories (54,735 images) and weak categories
(57,584 images) respectively. Finally, the detection models
are evaluated on val2 set (9,917 images) and the mAP is
calculated over the last 100 categories.

It is noted that the training images in both datasets
are possible to contain more than one object class. Thus a
portion of training images would be included in both strong
and weak sets. For example, an image containing both dog
(strong category) and person (weak category) will be used in
both sets. In this case, our method considers the image as a
fully labeled dog image in set S and a weakly labeled person
image in setW .

5.2.2 Implementation Details

In this section, we introduce the detailed implementation
settings for Ours-MSD and three baselines. Table 1 summa-
rizes their statistics.

Learning the knowledge from set S . In OOM-MSD
baseline and Ours-MSD, we train the original objectness
model and the domain-invariant objectness model from
set S respectively. Both the two objectness models start
from VGG16 models pre-trained on ImageNet classification
[40]. The last 1000-way fc layer of VGG16 is changed to a
new 256-way fc layer and its output, the 256-dimensional
vector, serves as the feature f introduced in Section 4.1. The
feature f is then used for both objectness prediction and
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domain classification. For objectness prediction, f is directly
connected to a 2-way fc layer; for domain classification, f is
connected to 3 fc layers (1024-1024-2). Note that this domain
classifier branch is removed in OOM-MSD.

During training, the objectness models are trained for 10
epochs using stochastic gradient descent (SGD). The initial
learning rate is set to 0.001 for the first 5 epochs and de-
creased to 0.0001 for the last 5 epochs. A momentum 0.9 and
a weights decay of 0.0005 are used. For domain-invariant
model, the reversed gradients collected from domain clas-
sifier start from −0.0 × gradient and gradually decrease to
−0.1 × gradient in the first 8,000 training iterations to make
the training process stable in the early iterations.

In B-MSD baseline, we train a supervised Fast RCNN
detector [2] on set S . The detector is initialized using VGG16
pre-trained on ImageNet classification, which is the same as
the objectness models used in OOM-MSD and Ours-MSD.
During training, the Fast RCNN detector is trained for 20
epochs, and the learning rates are set to 0.001 and 0.0001 for
the first and the last 10 epochs respectively.

Training object detectors on setW . For OOM-MSD and
Ours-MSD, the objectness knowledge is utilized to train the
objectness-aware detection models; for B-WSD and B-MSD,
standard MIL-based WSD models are learned. As shown in
Table 1, the implementations of the four detection models
(Ours-MSD and three baselines) are different. The details
are as follows:

In previous MSD method (i.e., LSSOD [23]), the weakly
supervised detectors are based on AlexNet [30]. Thus, for
a fair comparison, the detection models used in B-WSD,
OOM-MSD and Ours-MSD are initialized using the same
AlexNet model pre-trained on ImageNet. The only excep-
tion is B-MSD. B-MSD proposes to fine tune VGG16 Fast
RCNN detectors to the VGG16 WSD models. To compare
with the B-MSD baseline, we additionally train detection
models based on VGG16 for B-WSD baseline and Ours-
MSD.

During training, the detection experiments run for 20
epochs and the learning rates are set to 5 × 10−5 and 5 ×
10−6 respectively for the first and last 10 epochs. Similar
to Fast RCNN [2], the aspect ratios of the input images are
retained fixed, and the shorter sides of images are resized
to 600. Only horizontal flipping is applied as a form of data
augmentation. At testing time, non-maximum suppression
(NMS) is used to ignore redundant, overlapped boxes and
the threshold of NMS is set to 0.3.

5.2.3 Evaluation on Large-scale Dataset
In this section, the proposed method is evaluated on ILSVR-
C2013 detection dataset. The experiment results (mAP %)
on set W (the last 100 categories of ILSVRC2013 detection)
are shown in Table 2. We first focus on the WSD methods
(the first compartment of Table 2). With the image-level
labels only, B-WSD achieves a relatively low performance
(B-WSD-AlexNet, 13.78%). When utilizing deeper networks,
the performance of B-WSD is even lower (B-WSD-VGG16,
11.82%). The goal of B-WSD is to distinguish between d-
ifferent object categories. Thus, with more capable VGG16
networks, B-WSD might tend to search more discriminative
object parts, rather than the whole objects. It will lead to
inferior detection results. Regarding the B-WSD baseline,

TABLE 2
Object detection performance (mAP %) on ILSVRC2013 val2 set. The
mAP is computed over the last 100 categories. ∗ The results of [26] are

obtained by averaging the reported numbers (in the supplementary
material of [26]) over the last 100 categories

Method
mAP on setW
(100 categories)

weakly supervised:
B-WSD-AlexNet 13.78
B-WSD-VGG16 11.82
(OM+MIL)+FRCN-AlexNet [26] ∗ 6.25
(OM+MIL)+FRCN-VGG16 [26] ∗ 9.10

mixed supervised:
LSSOD (visual) [23] 19.02
LSSOD (semantic) [23] 19.04
ens-LSSOD [23] 20.03
B-MSD-VGG16 16.44
OOM-MSD-AlexNet 18.54
Ours-MSD-AlexNet 22.28
Ours-MSD-VGG16 25.26

fully supervised:
FRCN-AlexNet: 26.40
FRCN-VGG16: 30.82

an interesting comparison is that the performance of B-
WSD outperforms the state-of-the-art WSD result [26] by
a large margin (13.78% vs. 6.25%). While in PASCAL VOC
dataset (as will be shown in Table 4), [26] could easily
surpass B-WSD (31.0% vs. 23.87%). In the algorithm of
[26], several hyperparameters, e.g., the number of mined
proposals, need to be set. In small dataset, such as PASCAL
VOC, these hyperparameters could be decided by using
cross-validation. However, in large-scale dataset, searching
proper hyperparameters for hundreds of object categories is
much more difficult and it finally results in unsatisfactory
performance in large-scale scenarios. We believe that the
robust algorithms with few hyperparameters are more ap-
propriate, especially in large-scale datasets, to obtain high-
performance detectors.

Different from the WSD methods, the OOM-MSD and
Ours-MSD that are based on objectness transfer approach
obtain much better results. Regarding the OOM-MSD base-
line, as we have sufficient strong categories (the first 100 cat-
egories) in large-scale dataset, the original objectness model
already learns, to some extent, “general” objectness knowl-
edge. Thus, the subsequent objectness-aware detection mod-
els could obtain remarkable improvement on setW (18.54%
vs. 13.78%). The performance of Ours-MSD is improved
to 22.28% by applying domain-invariant model, where the
learned objectness knowledge is more robust to the change
of categories. Ours-MSD could obtain further improvements
by utilizing deeper detection networks (Ours-MSD-VGG16,
25.26%). As the object parts are more likely recognized as
distractors and rejected with deeper networks in Ours-MSD.
By fine tuning the supervised detectors to WSD models, the
B-MSD baseline can improve the B-WSD baseline (16.44%
vs. 11.82%). But the performance is still obviously lower than
Ours-MSD (16.44 % vs. 25.26%). In some way, with the fine-
tuning approach, B-MSD aims to reduce the gap between
the detection task and the classification task. In contrast, our



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2018 8

Fig. 3. Sample detection results on ILSVRC2013 val2 set of the last 100 categories. The first row shows the results of the baseline WSD model
(B-WSD-AlexNet) and the second row lists the results of the same images predicted by the objectness-aware model (Ours-MSD-AlexNet).

TABLE 3
Object detection performance (mAP %) on PASCAL VOC 2007 test

set. The mAP is computed over the last 10 categories.

Method
mAP on setW
(10 categories)

B-WSD-AlexNet 22.63

LSSOD (visual) 5.76

OOM-MSD-AlexNet 14.00
Ours-MSD-AlexNet 32.21

MSD method transfers the objectness knowledge to weak
categories, which is crucial to detect objects. Moreover,
our method also aims to reduce the discrepancy between
different categories. The last compartment of Table 2 shows
the results of fully supervised Fast RCNN detectors trained
on the last 100 categories. Compared with these oracle de-
tectors, our MSD method attains comparable performance
(e.g., 22.28% vs. 26.40%).

In order to illustrate our improvements more clearly, we
draw the detection results of the B-WSD and Ours-MSD
for the same image, as shown in Fig. 3. We can see that,
in Ours-MSD, the objectness-aware model is endowed with
the ability to reject the distractors (contexts or object parts)
by incorporating the objectness knowledge. Such ability
is essential for object detection and finally results in the
remarkable improvements.

Our method is then compared with the state-of-the-art
MSD method LSSOD [23], which performs intra-dataset
detection in ILSVRC2013 (our experimental setup is slightly
different from LSSOD, and we will clarify this in sup-
plementary materials). LSSOD transfers the classifier and
detector differences from strong to weak categories based
on their visual and semantic similarities, which correspond
to the visual transfer model and semantic transfer model
respectively. The best performance of the two models are
19.02% (visual) and 19.04% (semantic). The results are slight-
ly higher than the OOM-MSD baseline (18.54%), but they
are lower than that of our method (22.28%). The ensemble
of the two models (20.03%) still cannot compete with our
method. These results demonstrate the effectiveness of our
method on large-scale datasets and prove that making use
of transferable objectness knowledge to improve WSD is
reasonable and successful.

5.2.4 Evaluation on Smaller Dataset
We also compare these methods on a much smaller dataset,
PASCAL VOC 2007, where only a small quantity of fully
labeled categories are available. The results are shown in
Table 3. In the smaller dataset, the distribution discrepancy
between strong and weak categories becomes very large.
The original objectness model trained with only 10 strong
categories will have strong bias on these categories, and the
subsequent objectness-aware detection model only achieves
14.00% on weak categories, which is even far below the
baseline method (22.63%). LSSOD cannot deal with the
large distribution discrepancy as well. During the knowl-
edge transfer process, LSSOD assumes that the differences
learned on layers 1-7 in AlexNet are category-invariant,
and those differences are shared between strong and weak
categories. However, with large distribution discrepancy,
layers 1-7 actually learn category-specific representations,
and this assumption is no longer hold. As a result, LSSOD
completely fails (5.76%) in this scenario.

On the contrary, we can relieve these impacts by train-
ing domain-invariant objectness model. With the domain-
invariant knowledge, our method significantly improves the
detection performance to 32.21%. It proves the ability of our
domain-invariant method to cope with the large distribution
discrepancy. Even if we only have access to limited fully
labeled categories, we still be able to use the proposed
method to localize new objects.

5.3 Cross-dataset Detection

5.3.1 Benchmark Data
In this section, we evaluate our MSD framework on a cross-
dataset detection task. The task is conducted between PAS-
CAL VOC 2007 dataset and ILSVRC2013 detection dataset.
In the cross-dataset scenario, all the images in VOC 2007
trainval constitute set W (20 categories, 5,011 images); the
images whose categories do not overlap with set W are se-
lected from the ILSVRC2013 trainval1 to form the set S (180
categories, 89,391 images). The mAP is used to evaluated
the performance of the detection models on VOC 2007 test
set over all the 20 categories. The CorLoc [39] is applied
to measure the localization accuracy of models on VOC
2007 trainval set. We also conduct the cross-dataset detection
on PASCAL VOC 2010 and PASCAL VOC 2012. The object
categories of VOC 2010 and VOC 2012 are the same as VOC
2007. The size of VOC 2010 and VOC 2012 is approximately
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TABLE 4
Object Detection performance (mAP %) on PASCAL VOC 2007 test set. “Ours-MSD-Ens” is the ensemble model obtained by averaging the
outputs of AlexNet and VGG16 objectness-aware models. “Ours-MSD-Ens + FRCN-VGG16” indicates the method that utilizes our ensemble

model to select top-scoring regions as pseudo ground truths and then trains a supervised Fast RCNN detector [2] using VGG16 model.

Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

weakly supervised:
B-WSD-AlexNet 40.5 35.3 19.5 5.8 7.7 38.9 39.9 23.3 1.6 25.0 11.1 25.2 29.9 49.5 21.3 16.4 24.4 16.8 35.1 10.5 23.87
B-WSD-VGG16 43.1 32.5 18.5 8.7 13.1 33.5 37.3 18.0 11.4 18.3 21.8 28.5 23.3 46.4 8.5 16.3 22.6 27.8 43.3 27.9 25.03
Wang et al. [27] 48.9 42.3 26.1 11.3 11.9 41.3 40.9 34.7 10.8 34.7 18.8 34.4 35.4 52.7 19.1 17.4 35.9 33.3 34.8 46.5 31.6
WSDDN-VGG F [10] 42.9 56.0 32.0 17.6 10.2 61.8 50.2 29.0 3.8 36.2 18.5 31.1 45.8 54.5 10.2 15.4 36.3 45.2 50.1 43.8 34.5
WSDDN-VGG M [10] 43.6 50.4 32.2 26.0 9.8 58.5 50.4 30.9 7.9 36.1 18.2 31.7 41.4 52.6 8.8 14.0 37.8 46.9 53.4 47.9 34.9
WSDDN-VGG16 [10] 39.4 50.1 31.5 16.3 12.6 64.5 42.8 42.6 10.1 35.7 24.9 38.2 34.4 55.6 9.4 14.7 30.2 40.7 54.7 46.9 34.8
WSDDN-Ens [10] 46.4 58.3 35.5 25.9 14.0 66.7 53.0 39.2 8.9 41.8 26.6 38.6 44.7 59.0 10.8 17.3 40.7 49.6 56.9 50.8 39.3
(OM+MIL)+FRCN-AlexNet [26] 49.7 33.6 30.8 19.9 13.0 40.5 54.3 37.4 14.8 39.8 9.4 28.8 38.1 49.8 14.5 24.0 27.1 12.1 42.3 39.7 31.0
(OM+MIL)+FRCN-VGG16 [26] 54.5 47.4 41.3 20.8 17.7 51.9 63.5 46.1 21.8 57.1 22.1 34.4 50.5 61.8 16.2 29.9 40.7 15.9 55.3 40.2 39.5
ContextLocNet [25] 57.1 52.0 31.5 7.6 11.5 55.0 53.1 34.1 1.7 33.1 49.2 42.0 47.3 56.6 15.3 12.8 24.8 48.9 44.4 47.8 36.3
WCCN-AlexNet [24] 43.9 57.6 34.9 21.3 14.7 64.7 52.8 34.2 6.5 41.2 20.5 33.8 47.6 56.8 12.7 18.8 39.6 46.9 52.9 45.1 37.3
WCCN-VGG16 [24] 49.5 60.6 38.6 29.2 16.2 70.8 56.9 42.5 10.9 44.1 29.9 42.2 47.9 64.1 13.8 23.5 45.9 54.1 60.8 54.5 42.8

mixed supervised:
B-MSD-VGG16 40.1 49.2 31.2 13.9 23.9 48.7 52.9 42.6 4.9 40.5 26.1 38.5 36.5 61.3 22.3 14.6 39.1 22.4 37.4 24.7 33.53
OOM-MSD-AlexNet 52.5 49.1 37.9 35.1 15.5 49.9 51.9 53.2 8.9 40.1 17.9 47.6 50.9 59.3 11.6 16.8 43.7 26.3 43.6 40.9 37.65
Ours-MSD-AlexNet 55.8 56.6 41.1 35.1 22.8 60.1 58.5 55.0 10.3 48.5 22.2 50.5 55.8 61.6 12.8 21.7 44.4 26.1 46.8 49.4 41.77
Ours-MSD-VGG16 61.1 66.3 54.8 12.5 36.5 63.1 61.9 66.9 17.5 66.1 14.3 69.3 65.4 69.6 2.4 20.5 54.6 34.3 58.3 54.6 47.50
Ours-MSD-Ens 65.6 67.2 54.3 31.2 35.8 68.1 65.0 63.3 17.3 66.8 18.3 70.6 66.7 69.8 3.7 24.7 55.0 37.4 58.3 57.3 49.82
Ours-MSD-Ens + FRCN-VGG16 70.5 69.2 53.3 43.7 25.4 68.9 68.7 56.9 18.4 64.2 15.3 72.0 74.4 65.2 15.4 25.1 53.6 54.4 45.6 61.4 51.08

fully supervised:
FRCN-AlexNet 61.5 64.6 46.3 34.3 20.4 65.0 65.9 63.8 27.0 57.2 55.0 54.3 62.0 66.8 48.0 23.7 49.0 49.0 62.7 58.6 51.8
FRCN-VGG16 71.7 72.0 60.8 45.1 32.3 73.6 76.6 78.7 35.8 72.3 62.8 75.1 71.1 73.0 61.2 32.0 62.3 65.6 70.6 65.5 62.9

twice larger than VOC 2007 for both trainval and test sets.
For VOC 2010, the trainval images construct set W and the
detection performance is evaluated on VOC 2010 test set
over all the 20 categories. The same cross-dataset setting is
adopted for VOC 2012 dataset.

5.3.2 Implementation Details
In cross-dataset detection task, the most of the experimental
settings (learning rates, nms threshold, etc.) are as same
as the ones in intra-dataset detection case (Section 5.2.2).
The only difference is that, when the detection models
in Ours-MSD and the three baselines are learned, we use
five image scales {480, 576, 688, 864, 1200} for both training
and testing as an additional form of data augmentation.
This multi-scale training/testing strategy is widely-used in
recent fully/weakly supervised detection methods [5], [10],
[26] and has proven effective on PASCAL VOC dataset.

5.3.3 Evaluation on PASCAL VOC 2007
Our results for each class on PASCAL VOC 2007 are report-
ed in Table 4 (mAP) and Tabel 5 (CorLoc). The first compart-
ment in both tables shows the results obtained by state-of-
the-art WSD methods [10], [26] and B-WSD baseline, which
are trained on the weak categories (20 categories in PASCAL
VOC) only. The second compartment reports the results
of the MSD methods that leverage extra strong categories
(180 categories in ILSVRC2013) for training. Additionally,
in Table 4, the performance of fully supervised Fast RCNN
detectors is listed in the third compartment. The Fast RCNN
detectors are trained without bounding box regression and
the results are cited from the experiment logs released by Fast
RCNN. §.

As shown in Table 4 and Table 5, using a single AlexNet
model, Ours-MSD achieves huge improvements in mAP
(41.17% vs. 23.87%) and in CorLoc (61.00% vs. 41.35%)

§. https://dl.dropboxusercontent.com/s/q4i9v66xq9vhskl/fast
rcnn experiments.tgz?dl=0

compared with the B-WSD baseline. This performance also
significantly exceeds the state-of-the-art WSD results [24],
[25] (41.77% vs. 37.3%/36.3%). When compared with OOM-
MSD, our method with robust objectness knowledge also
shows superiority (41.77% vs. 37.65%). When Ours-MSD
is trained with the deeper VGG16 detectors, the result is
improved to 47.50%, which also largely outperforms the B-
WSD baseline (25.03%), the B-MSD baseline (33.53%) and
previous WSD results [24], [26] (42.8%/39.3%) that also
adopt VGG16 detectors. Similar to WSDDN [10], our results
can be further improved by combing multiple models. The
ensemble model used in our method (Ours-MSD-Ens) is
obtained by simply summing up the scores of AlexNet
detector (Ours-MSD-AlexNet) and VGG16 detector (Ours-
MSD-VGG16) and it finally achieves 49.82%, which outper-
forms the ensemble results in WSDDN by a large margin
(49.82% vs. 39.3%). Also, similar to [26], we use the obtained
ensemble model to select top-scoring regions (select one
highest-score region from each image of each category) as
pseudo ground truth boxes to train a supervised VGG16
Fast RCNN detector [2] with no bounding box regression.
Further improvements can be obtained with this process
(51.08% vs. 49.82%). Finally, as shown in Table 4, even when
compared with fully supervised Fast RCNN detectors, our
MSD methods can achieve comparable detection results.

Then we compare the proposed method with the state-
of-the-art MSD method, WSLAT [22], which also leverages
the strong categories of ILSVRC2013 to support the WSD
learning on PASCAL VOC 2007. The proposed method is
compared with WSLAT in terms of CorLoc (%) in Table 5,
since WSLAT does not report their mAP results on VOC
2007 test set. It is noted that WSLAT has three variants in
[22]: 1) a WSD model directly trained on weak categories
(denoted as WSLATweak ); 2) a transfer model (denoted
as WSLATtrans ) built on both strong and weak categories
leveraging their semantic relationships, and 3) ensemble
model (denoted as WSLAT-Ens) by combining the above
two. Our method outperforms all the three variants. In
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TABLE 5
Object Detection performance (CorLoc %) on PASCAL VOC 2007 trainval set

Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv CorLoc

weakly supervised:
B-WSD-AlexNet 67.50 54.51 36.04 20.21 14.12 54.31 66.10 49.13 9.27 54.79 11.79 41.63 45.58 75.10 38.04 40.00 48.45 30.65 50.95 21.86 41.35
B-WSD-VGG16 76.67 58.82 39.04 26.06 34.73 58.88 72.40 48.55 26.57 43.15 42.21 43.95 48.98 78.71 28.07 38.46 50.52 43.01 59.32 41.94 48.00
Wang et al. [27] 80.1 63.9 51.5 14.9 21.0 55.7 74.2 43.5 26.2 53.4 16.3 56.7 58.3 69.5 14.1 38.3 58.8 47.2 49.1 60.9 48.5
WSDDN-VGG F [10] 68.5 67.5 56.7 34.3 32.8 69.9 75.0 45.7 17.1 68.1 30.5 40.6 67.2 82.9 28.8 43.7 71.9 62.0 62.8 58.2 54.2
WSDDN-VGG M [10] 65.1 63.4 59.7 45.9 38.5 69.4 77.0 50.7 30.1 68.8 34.0 37.3 61.0 82.9 25.1 42.9 79.2 59.4 68.2 64.1 56.1
WSDDN-VGG16 [10] 65.1 58.8 58.5 33.1 39.8 68.3 60.2 59.6 34.8 64.5 60.5 43.0 56.8 82.4 25.5 41.6 61.5 55.9 65.9 63.7 53.5
WSDDN-Ens [10] 68.9 68.7 65.2 42.5 40.6 72.6 75.2 53.7 29.7 68.1 33.5 45.6 65.9 86.1 27.5 44.9 76.0 62.4 66.3 66.8 58.0
(OM+MIL)+FRCN-AlexNet [26] 77.3 62.6 53.3 41.4 28.7 58.6 76.2 61.1 24.5 59.6 18.0 49.9 56.8 71.4 20.9 44.5 59.4 22.3 60.9 48.8 49.8
(OM+MIL)+FRCN-VGG16 [26] 78.2 67.1 61.8 38.1 36.1 61.8 78.8 55.2 28.5 68.8 18.5 49.2 64.1 73.5 21.4 47.4 64.6 22.3 60.9 52.3 52.4
ContextLocNet [25] 83.3 68.6 54.7 23.4 18.3 73.6 74.1 54.1 8.6 65.1 47.1 59.5 67.0 83.5 35.3 39.9 67.0 49.7 63.5 65.2 55.1
WCCN-AlexNet [24] 79.7 68.1 60.4 38.9 36.8 61.1 78.6 56.7 27.8 67.7 20.3 48.1 63.9 75.1 21.5 46.9 64.8 23.4 60.2 52.4 52.6
WCCN-VGG16 [24] 83.9 72.8 64.5 44.1 40.1 65.7 82.5 58.9 33.7 72.5 25.6 53.7 67.4 77.4 26.8 49.1 68.1 27.9 64.5 55.7 56.7
WSLATweak [22] 77.31 55.55 62.76 40.88 21.31 77.96 72.1 54.9 14.83 68.79 29.50 56.29 70.38 74.69 43.18 27.35 47.91 26.20 70.88 67.19 53.00

mixed supervised:
WSLATtrans [22] 48.32 48.97 17.58 55.25 6.15 32.26 15.85 40.36 28.54 70.92 4.50 15.91 43.55 34.69 13.75 3.26 51.04 28.38 46.74 19.92 31.3
WSLAT-Ens [22] 78.57 63.37 66.36 56.35 19.67 82.26 74.75 69.13 22.47 72.34 31.00 62.95 74.91 78.37 48.61 29.39 64.58 36.24 75.86 69.53 58.84
B-MSD-VGG16 60.93 68.24 52.25 34.04 38.55 69.04 75.03 58.43 12.41 74.66 36.12 58.37 55.78 83.13 40.81 37.00 73.20 41.40 47.91 42.29 52.97
OOM-MSD-AlexNet 86.25 66.67 66.37 57.45 29.01 66.50 71.48 66.86 20.80 73.97 30.04 67.44 72.11 87.15 29.40 31.87 78.35 47.85 65.40 56.63 58.58
Ours-MSD-AlexNet 85.00 72.16 66.37 66.49 38.17 73.60 78.71 66.28 22.90 79.45 27.38 72.09 78.91 87.55 15.75 39.56 81.44 41.94 63.50 62.72 61.00
Ours-MSD-VGG16 85.83 77.25 73.57 49.47 66.41 76.14 84.36 74.13 32.87 86.99 19.01 84.19 85.03 90.36 13.37 34.43 88.66 44.09 71.86 67.38 65.27
Ours-MSD-Ens 89.17 75.69 75.08 66.49 58.78 78.17 88.89 66.86 28.15 86.30 29.66 83.49 83.33 92.77 23.68 40.29 85.57 48.92 70.34 68.10 66.79

TABLE 6
Object Detection performance (mAP %) on PASCAL VOC 2010 test set

and VOC 2012 test set.

Method VOC 2010 VOC 2012

weakly supervised
B-WSD-AlexNet 25.25 24.65
B-WSD-VGG16 21.51 21.44
(OM+MIL)+FRCN-AlexNet [26] 21.4 22.4
(OM+MIL)+FRCN-VGG16 [26] 30.7 29.1
ContextLocNet [25] - 35.3
WCCN-AlexNet [24] 28.8 28.4
WCCN-VGG16 [24] 39.5 37.9

mixed supervised
B-MSD-VGG16 33.92 33.93
OOM-MSD-AlexNet 35.42 35.43
Ours-MSD-AlexNet 37.98 38.12
Ours-MSD-VGG16 42.87 43.42

particular, WSLATtrans is mostly close to us. However, its
reported CorLoc value is 31.3% [22], far below that of our
method (61.00%). Only by combining a high-performance
WSD model (WSLATweak , 53.00%), does the WSLAT obtain
an acceptable result (WSLAT-Ens, 58.84%).

5.3.4 Evaluation on PASCAL VOC 2010 and VOC 2012

In this section, our MSD method (Ours-MSD) is compared
with the baseline methods and other state-of-the-art WSD
methods on VOC 2010 and VOC 2012. The detection results
(mAP) are reported in Table 6. In general, the detection per-
formance of VOC 2010 and VOC 2012 is lower than that of
VOC 2007. When compared with WSD methods, Ous-MSD
significantly outperforms B-WSD baseline and the state-of-
the-art results [24], [25], [26] with both AlexNet detectors
and VGG16 detectors. When the two objectness transfer
methods are compared, Ous-MSD also surpasses OOM-
MSD. Finally, Ours-MSD outperforms B-MSD baseline by
a large margin on both VOC 2010 and VOC 2012 datasets.
It conforms the superiority of the robust objectness transfer
approach over the straightforward fine-tuning approach.

TABLE 7
Object detection performance (mAP) on PASCAL VOC 2007.

“MSD-no-distractor” indicates the alternative baseline that only learns
20 object categories from the selected object regions (top 15%).

Method mAP
B-WSD 23.87
MSD-no-distractor 25.95
Ours-MSD 41.77

5.4 Ablation Studies

In this section, we conduct some ablation experiments to
illustrate the effectiveness of our robust objectness transfer
MSD approach. Without loss of generality, the comparisons
are performed on cross-dataset detection task and trained
with the AlexNet model. All the experiments follow the
same settings mentioned in Section 5.3.2 (learning rates, nms
threshold, multi-scale strategies, etc.).

5.4.1 Is Learning the Concept of Distractors Necessary for
WSD?
To explore the necessity of modelling distractors in WS-
D, we propose an alternative baseline, MSD-no-distractor
and compare it with the proposed method (Ours-MSD).
MSD-no-distractor also utilizes the objectness knowledge
but aims to learn object categories only. Specially, MSD-
no-distractor first uses the obtained objectness model to
score the regions in each weakly labeled image. Then it
selects the top 15% of regions as the “object regions”, which
is similar to Ours-MSD. The difference is that MSD-no-
distractor only utilizes the selected top 15% “object regions”
to train a 20-class (20 categories of PASCAL VOC) WSD
model; while Ours-MSD utilizes both the top 15% “object
regions” and the last 85% “non-object regions” to train a
20+1-class objectness-aware detection model.

The performance comparison of the three methods (B-
WSD, Ours-MSD and MSD-no-distractor) is shown in Table
7. We can see that the performance of MSD-no-distractor is
only slightly better than that of B-WSD (25.95% vs. 23.87%).
Compared with B-WSD, MSD-no-distractor has already



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 2018 11

TABLE 8
Object detection performance (mAP) on PASCAL VOC 2007 test set. The mAP is computed over 8 natural object categories.

Method bird cat cow dog horse person plant sheep mAP
B-WSD 21.5 20.8 25.9 26.7 23.5 18.3 12.8 19.9 21.17
Ours-MSD 40.7 37.0 37.6 23.1 45.1 18.6 17.9 28.6 31.08

Object Detection (mAP) for Different Training Strategies

Ours-MSD

m
A

P
(%

)

Fig. 4. Object Detection performance (mAP) on PASCAL VOC 2007.
“Ours-MSD-k%” indicates the objectness-aware method that utilizes the
top k% regions as the object regions and considers the last 1-k% regions
as non-object regions.

largely reduced the search space for object categories (from
100% regions used in B-WSD to the selected 15% regions
used in MSD-no-distractor), but it still cannot distinguish
the objects from distractors. When the trained detectors saw
a distractor, e.g., a cat face, the MSD-no-distractor cannot
recognize it as a false detection due to the missing of
distractor concept and the obtained improvements are quite
small. Only when we learn the distractor concept together
with the object categories (Ours-MSD), does the detector
correctly distinguish between objects and distractors and
achieve remarkable improvements (41.77% vs. 23.87%).

5.4.2 The Effect of the Quantity of Selected Object Regions
In Ours-MSD, we select the top 15% of regions as object re-
gions to train the objectness-aware detection models. In this
ablation experiment, we analyse the influence of selected ob-
ject regions’s quantity. We apply the same domain-invariant
objectness model to re-rank the regions in weakly labeled
images. Then we use top 5%, top 25%, top 35%, top 55%, top
75% of regions as object regions respectively meanwhile uti-
lize the remaining regions as non-object regions to train the
objectness-aware detection models. The results are shown
in Fig. 4. It can be seen that when the number of selected
object regions are small (e.g., top 5%), the selected object
bags do not contain enough positive regions (IoU≥0.5) in
images (The detailed recall numbers of positive regions can
be found in Fig. 5). Thus the performance improvement
of subsequent detection models is limited (Ours-MSD-5%,
35.36%). With more regions selected as objects (from top 5%
to top 15%), the recall of positive regions in selected object
bags gradually increases, and the performance of detection
models also improves (from 35.36% to 41.77%). But when
more regions are chosen as objects, the improvements of the
recall are relatively small. Moreover, the large number of
selected regions would bring in lots of false positives and
decrease the performance of detectors.

5.4.3 Discrepant Domains Transfer (Natural Objects vs.
Man-made Objects)

In this section, we aim to apply our objectness transfer
approach between more discrepant domains. We select 8
natural object categories from PASCAL VOC 2007 and con-
struct set W with images of natural objects (1,929 images).
Then all the man-made objects are selected from ILSVRC2013
detection (139 categories in total) and their images construct
set S . The proposed method is compared with the B-WSD
method and the results are shown in Table 8. It can be seen
that the performance of Ours-MSD significantly outper-
forms the B-WSD (31.08% vs. 21.17%). Even when the strong
categories and weak categories come from more discrepant
domains, i.e., man-made vs. natural, our objectness transfer
approach is still effective to improve the WSD performance.

5.4.4 Comparisons with Other Objectness Detectors

Further experiments are conducted to compare our domain-
invariant objectness model with other objectness/proposal
methods for objectness and object instance detection on PAS-
CAL VOC 2007. Four models are considered: Objectness
[33], EdgeBox [36] ¶, original objectness model (OOM-MSD,
Section 5.1) and our domain-invariant objectness model
(Ours-MSD, Section 4.1). For each model, we re-rank the se-
lective search windows based on their objectness scores, and
compute the recall for different percentage of the proposals
(i.e., percentage of windows considered containing an object
instance) when IoU=0.7. The results are shown in Fig. 5.
It can be seen that our domain-invariant objectness model
outperforms existing objectness models (i.e., Objectness &
EdgeBox) and the original objectness model in all cases.
This confirms that our domain-invariant objectness model
is a better objectness detector, which accounts for the better
performance of the proposed domain-invariant objectness.

To test the effect of different objectness models on object
instance detection, for each of them, we select the top 15%
of the re-ranked selective search windows as “objects” to
train the objectness-aware detection model. The detection
results are shown in Table 9. We can see that when we use
existing objectness models, the subsequent detection mod-
els (Objectness-MSD & EdgeBox-MSD) obtain significantly
lower performance than the ones using the CNN-based ob-
jectness models, OOM-MSD & Ours-MSD (10.99%&19.78%
vs. 37.65%&41.77%). When the two objectness models are
compared, Ours-MSD outperforms OOM-MSD.

It is quite a surprising result that the performance of
EdgeBox-MSD is much lower than that of OOM-MSD &
Ours-MSD. As shown in Fig. 5, the recall numbers at 15% for

¶. The official code of EdgeBox [36] uses the edge-driven objectness
measure to score sliding windows and finally outputs the selected
windows with their objectness scores. To calculate the objectness score
for a specific given box, we use its modified code provided by [14].
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Fig. 5. The recall rates on PASCAL VOC 2007 trainval set. We compute
the recall using the code provided by [36]. The four curves join at
100% region proposals because we re-rank the existing selective search
windows.

TABLE 9
Object detection performance (mAP) on PASCAL VOC 2007.

“Objectness-MSD” & “EdgeBox-MSD” indicate the methods that utilize
objectness detector (Objectness & EdgeBox) to score selective search

windows and then train objectness-aware detection models.

Method mAP
Objectness-MSD [33] 10.99
EdgeBox-MSD [36] 19.78

OOM-MSD 37.65
Ours-MSD 41.77

three methods (EdgeBox & original objectness & domain-
invariant objectness) are very close, while the detection
performance of subsequent detection models differs greatly
(19.78% & 37.65% & 41.77%). So what makes such a contra-
diction?

We explore the reasons from the pitfall in weakly su-
pervised detection (WSD) as we mentioned in Section 1.
The regions in an image can be divided into three types
according to their IoUs with ground truths: positive objects
(IoU≥0.5), object parts (0<IoU<0.5) and backgrounds (IoU=0).
For WSD, the positive objects and backgrounds are easily to be
distinguished in most cases and the main difficulty is how
to separate positive objects from object parts. In selected object
regions (i.e., the top 15% of regions in our experimental
setting), few positive objects or excess object parts would both
hurt the WSD performance. The recall rates in Fig. 5 only
show the number of positive objects in selected regions and
do not consider the object parts. Thus it cannot roundly
reflect the effectiveness of these objectness detectors in WSD.
To address this issue, we conduct another experiment to
visualize the distribution of object parts for three methods.
The results are shown in Fig. 6.

In Fig. 6, the x-coordinate stands for the proportion of
object parts in selected regions and the y-coordinate stands
for the percentage of images having the corresponding
proportion range of object parts in all training images. For
example, the x-coordinate of the first blue bar is (0%∼10%),
indicating that “for a weakly labeled image with n (n=2000
for instance) region proposals, we select the top 15% regions
as objects (2000 × 0.15 = 300 regions); in the selected
300 regions, the 0%∼10% of these regions (0∼30 regions)
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Fig. 6. The distribution of object parts for three methods evaluated on
PASCAL VOC 2007 trainval set. The object parts are the regions whose
IoUs with ground truths are in the interval (0.0, 0.5). The object parts
are difficult to reject in weakly supervised setting.

are actually object parts”. Meanwhile, the y-coordinate of
the first blue bar, 10.18%, means that “in all 5011 training
images, there are 10.18% of the images (around 500 images),
in each of which 0%∼10% of the selected regions are object
parts.” As shown in Fig. 6, the mode of distribution curve
of object parts for EdgeBox (green bars) is obviously on the
right to the ones of our objectness models (red & blue bars),
which means there are more object parts in selected regions
for EdgeBox. It is noted that EdgeBox only utilizes low-level
cues (i.e., contour information) to measure objectness, which
has limited capability of rejecting object parts in images.
Considering a typical case that many object parts, such as
cat face, also have closed contours and can be recognized
as objects with EdgeBox. In contrast, our objectness model
learns to capture the concept of “complete objectness” from
lots of annotated data, which results in less object parts.

We can also observe that the object parts in domain-
invariant objectness models are also less than the original
objectness models. The reason is that the domain-invariant
models would include more backgrounds in selected regions
than the original objectness models. One overlooked fact
in PASCAL VOC is that the images in VOC contain lots of
“non-target objects” that do not belong to VOC 20 categories
[41]. That is, the backgrounds regions also contain a lot
of “complete objects” belonging to non-target categories.
Moreover, when we train domain-invariant objectness mod-
els, all regions in images of target domain (PASCAL VOC)
are randomly sampled to learn domain-invariant features.
Thus, the learned domain-invariant objectness would be
robust to not only VOC 20 categories but also the non-target
categories. Finally, the “non-target objects” in backgrounds
are more likely to be recognized as objects in domain-
invariant objectness models, which results in higher object-
ness scores for backgrounds and leads to fewer object parts in
selected top 15% regions. Considering both positive objects
(Fig. 5) and object parts (Fig. 6), our experiments clearly
confirm the superiority of our domain-invariant objectness
model for both objectness and object instance detection, espe-
cially in weakly supervised settings.

5.5 Error Analysis
Though our method achieves outstanding performance for
many categories, its performance is still poor for classes
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Fig. 7. Sample failure detection results on PASCAL VOC 2007 test set for class chair, table and person. Green rectangles are ground truth boxes,
and red rectangles indicate failure detections (IoU<0.5).

such as “chair”, “table” and “person”. For analysis, we
show failure detection results on VOC 2007 test in Fig. 7.
We can see that, for “chair” images, multiple chairs often
get close together and the chairs typically co-appear with a
table. In this case, it is difficult to figure out single complete
chair from images. The detectors would prefer to select the
whole table, as the table is the most likely “object”. The
similar situation also exists in “table” images. The tables
often appear together with other categories, such as bottle,
plate and person. The exact closed contours for such tables
cannot be clearly and easily confirmed, and the complete
bottles, plates, or even pizzas would be more easily recognized
as objects in such table images. The main kind of failure de-
tections of person images are caused by the multiple category
setting. In PASCAL VOC, some images contain more than
one categories, and for example in many person images, the
person appears together with bicycle, horse, or motorbike. In
such a situation, the selected object regions are considered
as positive for both person and horse categories, and the
detectors cannot distinguish between the person object and
the horse object. This issue caused by multiple category
setting is, to some extent, intrinsic in weakly supervised
settings where only image category labels are available.

6 CONCLUSION

In this paper, we consider mixed supervised detection (MS-
D), which aims to leverage the existing fully labeled cate-
gories to localize objects of new categories with weak labels
only. The weakly supervised detection of new objects does
not require expensive bounding box annotations, and satis-
factory detection solutions can be obtained by exploiting the
existing fully labeled categories. These characteristics make
MSD be a practically important problem.

In MSD, the existing fully labeled categories have no
overlap with new categories. Thus, the key issue to be
solved is how to learn the transferable and robust knowl-
edge from the existing categories to assist the detection on
new categories. Previous MSD works [20], [21], [22], [23]
transfer the learned object detectors from the existing cate-
gories to new categories following some hand-crafted strate-
gies. In contrast, the proposed robust objectness transfer
approach automatically learns the domain-invariant knowl-
edge, and the proposed objectness-aware detection model
further utilizes the learned objectness knowledge to distin-
guish the objects from distractors. The state-of-the-art object
detection performance has been achieved on benchmarking
datasets, which confirms the superiority of our proposed
method.
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