626 research outputs found

    Influences of phase transition and microstructure on dielectric properties of Bi0.5Na0.5Zr1-xTixO3 ceramics

    Get PDF
    Bismuth sodium zirconate titanate ceramics with the formula Bi0.5Na0.5Zr1-xTixO3 [BNZT], where x = 0.3, 0.4, 0.5, and 0.6, were prepared by a conventional solid-state sintering method. Phase identification was investigated using an X-ray diffraction technique. All compositions exhibited complete solubility of Ti4+ at the Zr4+ site. Both a decrease of unit cell size and phase transition from an orthorhombic Zr-rich composition to a rhombohedral crystal structure in a Ti-rich composition were observed as a result of Ti4+ substitution. These changes caused dielectric properties of BNZT ceramics to enhance. Microstructural observation carried out employing SEM showed that average grain size decreased when addition of Ti increased. Grain size difference of BNZT above 0.4 mole fraction of Ti4+ displayed a significant increase of dielectric constant at room temperature

    Type I interferons suppress viral replication but contribute to T cell depletion and dysfunction during chronic HIV-1 infection

    Get PDF
    The direct link between sustained type I interferon (IFN-I) signaling and HIV-1-induced immunopathogenesis during chronic infection remains unclear. Here we report studies using a monoclonal antibody to block IFN-α/β receptor 1 (IFNAR1) signaling during persistent HIV-1 infection in humanized mice (hu-mice). We discovered that, during chronic HIV-1 infection, IFNAR blockade increased viral replication, which was correlated with elevated T cell activation. Thus, IFN-Is suppress HIV-1 replication during the chronic phase but are not essential for HIV-1-induced aberrant immune activation. Surprisingly, IFNAR blockade rescued both total human T cell and HIV-specific T cell numbers despite elevated HIV-1 replication and immune activation. We showed that IFNAR blockade reduced HIV-1-induced apoptosis of CD4+ T cells. Importantly, IFNAR blockade also rescued the function of human T cells, including HIV-1-specific CD8+ and CD4+ T cells. We conclude that during persistent HIV-1 infection, IFN-Is suppress HIV-1 replication, but contribute to depletion and dysfunction of T cells

    Long-term efficacy of endoscopic cyclophotocoagulation in the management of glaucoma following cataract surgery in children

    Get PDF
    Purpose To report the long-term efficacy of endoscopic cyclophotocoagulation (ECP) in pediatric glaucoma following cataract surgery (GFCS). Methods ECP was performed on 35 eyes of 25 patients 24 mm Hg, alternative glaucoma procedure following ECP, or occurrence of visually significant complications. Analysis was performed to estimate risk factors for failure. Results A total of 27 aphakic and 8 pseudophakic eyes were included. Pretreatment IOP averaged 33.9 ± 7.9 mm Hg. Final IOP after a mean follow-up period of 7.2 years was 18.9 ± 8.8 mm Hg (P < 0.001). The success rate was 54% (19/35 eyes). The failure rate was not increased in pseudophakic patients relative to aphakic patients. Patients with single ECP demonstrated preserved visual acuity from baseline to final follow-up. Conclusions In this patient cohort, with average follow-up period of 7.2 years, ECP was useful in the treatment of pediatric GFCS

    High speed self-testing quantum random number generation without detection loophole

    Full text link
    Quantum mechanics provides means of generating genuine randomness that is impossible with deterministic classical processes. Remarkably, the unpredictability of randomness can be certified in a self-testing manner that is independent of implementation devices. Here, we present an experimental demonstration of self-testing quantum random number generation based on an detection-loophole free Bell test with entangled photons. In the randomness analysis, without the assumption of independent identical distribution, we consider the worst case scenario that the adversary launches the most powerful attacks against quantum adversary. After considering statistical fluctuations and applying an 80 Gb ×\times 45.6 Mb Toeplitz matrix hashing, we achieve a final random bit rate of 114 bits/s, with a failure probability less than 10510^{-5}. Such self-testing random number generators mark a critical step towards realistic applications in cryptography and fundamental physics tests.Comment: 34 pages, 10 figure

    Certifying randomness in quantum state collapse

    Full text link
    The unpredictable process of state collapse caused by quantum measurements makes the generation of quantum randomness possible. In this paper, we explore the quantitive connection between the randomness generation and the state collapse and provide a randomness verification protocol under the assumptions: (I) independence between the source and the measurement devices and (II) the L\"{u}ders' rule for collapsing state. Without involving heavy mathematical machinery, the amount of genereted quantum randomness can be directly estimated with the disturbance effect originating from the state collapse. In the protocol, we can employ general measurements that are not fully trusted. Equipped with trusted projection measurements, we can further optimize the randomness generation performance. Our protocol also shows a high efficiency and yields a higher randomness generation rate than the one based on uncertainty relation. We expect our results to provide new insights for understanding and generating quantum randomnes
    corecore