7,827 research outputs found

    Maximum Smoothed Likelihood Component Density Estimation in Mixture Models with Known Mixing Proportions

    Full text link
    In this paper, we propose a maximum smoothed likelihood method to estimate the component density functions of mixture models, in which the mixing proportions are known and may differ among observations. The proposed estimates maximize a smoothed log likelihood function and inherit all the important properties of probability density functions. A majorization-minimization algorithm is suggested to compute the proposed estimates numerically. In theory, we show that starting from any initial value, this algorithm increases the smoothed likelihood function and further leads to estimates that maximize the smoothed likelihood function. This indicates the convergence of the algorithm. Furthermore, we theoretically establish the asymptotic convergence rate of our proposed estimators. An adaptive procedure is suggested to choose the bandwidths in our estimation procedure. Simulation studies show that the proposed method is more efficient than the existing method in terms of integrated squared errors. A real data example is further analyzed

    High Order Asymptotic Preserving DG-IMEX Schemes for Discrete-Velocity Kinetic Equations in a Diffusive Scaling

    Full text link
    In this paper, we develop a family of high order asymptotic preserving schemes for some discrete-velocity kinetic equations under a diffusive scaling, that in the asymptotic limit lead to macroscopic models such as the heat equation, the porous media equation, the advection-diffusion equation, and the viscous Burgers equation. Our approach is based on the micro-macro reformulation of the kinetic equation which involves a natural decomposition of the equation to the equilibrium and non-equilibrium parts. To achieve high order accuracy and uniform stability as well as to capture the correct asymptotic limit, two new ingredients are employed in the proposed methods: discontinuous Galerkin spatial discretization of arbitrary order of accuracy with suitable numerical fluxes; high order globally stiffly accurate implicit-explicit Runge-Kutta scheme in time equipped with a properly chosen implicit-explicit strategy. Formal asymptotic analysis shows that the proposed scheme in the limit of epsilon -> 0 is an explicit, consistent and high order discretization for the limiting equation. Numerical results are presented to demonstrate the stability and high order accuracy of the proposed schemes together with their performance in the limit

    Charge-impurity-induced Majorana fermions in topological superconductors

    Get PDF
    We study numerically Majorana fermions (MFs) induced by a charged impurity in topological superconductors. It is revealed from the relevant Bogoliubov-de Gennes equations that (i) for quasi-one dimensional systems, a pair of MFs are bounded at the two sides of one charge impurity and well separated; and (ii) for a two dimensional square lattice, the charged-impurity-induced MFs are similar to the known pair of vortex-induced MFs, in which one MF is bounded by the impurity while the other appears at the boundary. Moreover, the corresponding local density of states is explored, demonstrating that the presence of MF states may be tested experimentally.Comment: 5 pages, 5 figure
    • …
    corecore