7,726 research outputs found

    Three-generation neutrino oscillations in curved spacetime

    Get PDF
    Three-generation MSW effect in curved spacetime is studied and a brief discussion on the gravitational correction to the neutrino self-energy is given. The modified mixing parameters and corresponding conversion probabilities of neutrinos after traveling through celestial objects of constant densities are obtained. The method to distinguish between the normal hierarchy and inverted hierarchy is discussed in this framework. Due to the gravitational redshift of energy, in some extreme situations, the resonance energy of neutrinos might be shifted noticeably and the gravitational effect on the self-energy of neutrino becomes significant at the vicinities of spacetime singularities.Comment: 25 pages, 5 figures, 2 tables. Some changes are made according to referee's suggestions. The final version is to be published at Nuclear Physics

    Representation Learning with Fine-grained Patterns

    Full text link
    With the development of computational power and techniques for data collection, deep learning demonstrates a superior performance over most of existing algorithms on benchmark data sets. Many efforts have been devoted to studying the mechanism of deep learning. One important observation is that deep learning can learn the discriminative patterns from raw materials directly in a task-dependent manner. Therefore, the representations obtained by deep learning outperform hand-crafted features significantly. However, those patterns are often learned from super-class labels due to a limited availability of fine-grained labels, while fine-grained patterns are desired in many real-world applications such as visual search in online shopping. To mitigate the challenge, we propose an algorithm to learn the fine-grained patterns sufficiently when only super-class labels are available. The effectiveness of our method can be guaranteed with the theoretical analysis. Extensive experiments on real-world data sets demonstrate that the proposed method can significantly improve the performance on target tasks corresponding to fine-grained classes, when only super-class information is available for training

    Analysis on Heavy Quarkonia Transitions with Pion Emission in Terms of the QCD Multipole Expansion and Determination of Mass Spectra of Hybrids

    Full text link
    One of the most important tasks in high energy physics is search for the exotic states, such as glueball, hybrid and multi-quark states. The transitions ψ(ns)→ψ(ms)+ππ\psi(ns)\to \psi(ms)+\pi\pi and Υ(ns)→Υ(ms)+ππ\Upsilon(ns)\to \Upsilon(ms)+\pi\pi attract great attentions because they may reveal characteristics of hybrids. In this work, we analyze those transition modes in terms of the theoretical framework established by Yan and Kuang. It is interesting to notice that the intermediate states between the two gluon-emissions are hybrids, therefore by fitting the data, we are able to determine the mass spectra of hybrids. The ground hybrid states are predicted as 4.23 GeV (for charmonium) and 10.79 GeV (for bottonium) which do not correspond to any states measured in recent experiments, thus it may imply that very possibly, hybrids mix with regular quarkonia to constitute physical states. Comprehensive comparisons of the potentials for hybrids whose parameters are obtained in this scenario with the lattice results are presented.Comment: 16 pages, 2 figur
    • …
    corecore