162 research outputs found

    On the Robotic Uncertainty of Fully Autonomous Traffic

    Full text link
    Recent transportation research suggests that autonomous vehicles (AVs) have the potential to improve traffic flow efficiency as they are able to maintain smaller car-following distances. Nevertheless, being a unique class of ground robots, AVs are susceptible to robotic errors, particularly in their perception module, leading to uncertainties in their movements and an increased risk of collisions. Consequently, conservative operational strategies, such as larger headway and slower speeds, are implemented to prioritize safety over traffic capacity in real-world operations. To reconcile the inconsistency, this paper proposes an analytical model framework that delineates the endogenous reciprocity between traffic safety and efficiency that arises from robotic uncertainty in AVs. Car-following scenarios are extensively examined, with uncertain headway as the key parameter for bridging the single-lane capacity and the collision probability. A Markov chain is then introduced to describe the dynamics of the lane capacity, and the resulting expected collision-inclusive capacity is adopted as the ultimate performance measure for fully autonomous traffic. With the help of this analytical model, it is possible to support the settings of critical parameters in AV operations and incorporate optimization techniques to assist traffic management strategies for autonomous traffic

    Learning to Collaborate by Grouping: a Consensus-oriented Strategy for Multi-agent Reinforcement Learning

    Full text link
    Multi-agent systems require effective coordination between groups and individuals to achieve common goals. However, current multi-agent reinforcement learning (MARL) methods primarily focus on improving individual policies and do not adequately address group-level policies, which leads to weak cooperation. To address this issue, we propose a novel Consensus-oriented Strategy (CoS) that emphasizes group and individual policies simultaneously. Specifically, CoS comprises two main components: (a) the vector quantized group consensus module, which extracts discrete latent embeddings that represent the stable and discriminative group consensus, and (b) the group consensus-oriented strategy, which integrates the group policy using a hypernet and the individual policies using the group consensus, thereby promoting coordination at both the group and individual levels. Through empirical experiments on cooperative navigation tasks with both discrete and continuous spaces, as well as Google research football, we demonstrate that CoS outperforms state-of-the-art MARL algorithms and achieves better collaboration, thus providing a promising solution for achieving effective coordination in multi-agent systems

    Reboost Large Language Model-based Text-to-SQL, Text-to-Python, and Text-to-Function -- with Real Applications in Traffic Domain

    Full text link
    The previous state-of-the-art (SOTA) method achieved a remarkable execution accuracy on the Spider dataset, which is one of the largest and most diverse datasets in the Text-to-SQL domain. However, during our reproduction of the business dataset, we observed a significant drop in performance. We examined the differences in dataset complexity, as well as the clarity of questions' intentions, and assessed how those differences could impact the performance of prompting methods. Subsequently, We develop a more adaptable and more general prompting method, involving mainly query rewriting and SQL boosting, which respectively transform vague information into exact and precise information and enhance the SQL itself by incorporating execution feedback and the query results from the database content. In order to prevent information gaps, we include the comments, value types, and value samples for columns as part of the database description in the prompt. Our experiments with Large Language Models (LLMs) illustrate the significant performance improvement on the business dataset and prove the substantial potential of our method. In terms of execution accuracy on the business dataset, the SOTA method scored 21.05, while our approach scored 65.79. As a result, our approach achieved a notable performance improvement even when using a less capable pre-trained language model. Last but not least, we also explore the Text-to-Python and Text-to-Function options, and we deeply analyze the pros and cons among them, offering valuable insights to the community

    Polyostotic feet acrometastases from breast carcinoma demonstrated on [18F]FDG PET/CT imaging

    Get PDF
    Acrometastases are rare. Less than 0.01% of patients have metastasis in the foot bone. Polyostotic metastasis in the foot is extremely rare. We report a 50-year-old woman who complained of progressive pain and swelling in the right foot after radical right mastectomy for 4 years. [18F]FDG PET/CT demonstrated multiple mixed bone destruction in the right foot with intense [18F]FDG PET/CT uptake. CT-guided calcaneus biopsy confirmed the diagnosis of metastatic breast carcinoma

    API-Bank: A Comprehensive Benchmark for Tool-Augmented LLMs

    Full text link
    Recent research has demonstrated that Large Language Models (LLMs) can enhance their capabilities by utilizing external tools. However, three pivotal questions remain unanswered: (1) How effective are current LLMs in utilizing tools? (2) How can we enhance LLMs' ability to utilize tools? (3) What obstacles need to be overcome to leverage tools? To address these questions, we introduce API-Bank, a groundbreaking benchmark, specifically designed for tool-augmented LLMs. For the first question, we develop a runnable evaluation system consisting of 73 API tools. We annotate 314 tool-use dialogues with 753 API calls to assess the existing LLMs' capabilities in planning, retrieving, and calling APIs. For the second question, we construct a comprehensive training set containing 1,888 tool-use dialogues from 2,138 APIs spanning 1,000 distinct domains. Using this dataset, we train Lynx, a tool-augmented LLM initialized from Alpaca. Experimental results demonstrate that GPT-3.5 exhibits improved tool utilization compared to GPT-3, while GPT-4 excels in planning. However, there is still significant potential for further improvement. Moreover, Lynx surpasses Alpaca's tool utilization performance by more than 26 pts and approaches the effectiveness of GPT-3.5. Through error analysis, we highlight the key challenges for future research in this field to answer the third question.Comment: EMNLP 202

    Self-Explanation Prompting Improves Dialogue Understanding in Large Language Models

    Full text link
    Task-oriented dialogue (TOD) systems facilitate users in executing various activities via multi-turn dialogues, but Large Language Models (LLMs) often struggle to comprehend these intricate contexts. In this study, we propose a novel "Self-Explanation" prompting strategy to enhance the comprehension abilities of LLMs in multi-turn dialogues. This task-agnostic approach requires the model to analyze each dialogue utterance before task execution, thereby improving performance across various dialogue-centric tasks. Experimental results from six benchmark datasets confirm that our method consistently outperforms other zero-shot prompts and matches or exceeds the efficacy of few-shot prompts, demonstrating its potential as a powerful tool in enhancing LLMs' comprehension in complex dialogue tasks

    Evolution of Microstructural Characteristics of Carbonated Cement Pastes Subjected to High Temperatures Evaluated by MIP and SEM

    Get PDF
    The microstructural evolutions of both uncarbonated and carbonated cement pastes subjected to various high temperatures (30 degrees C, 200 degrees C, 400 degrees C, 500 degrees C, 600 degrees C, 720 degrees C, and 950 degrees C) are presented in this study by the means of mercury intrusion porosimetry (MIP) and scanning electron microscopy (SEM). It was found that the thermal stabilities of uncarbonated cement pastes were significantly changed from 400 to 500 degrees C due to the decomposition of portlandite at this temperature range. More large pores and microcracks were generated from 600 to 720 degrees C, with the depolymerization of C-S-H. After carbonation, the microstructures of carbonated cement pastes remained unchanged below 500 degrees C and started to degrade at 600 degrees C, due to the decompositions of calcium carbonates and calcium modified silica gel. At 950 degrees C, both uncarbonated and carbonated cement pastes showed a loosely honeycombed microstructure, composed mainly of beta-C2S and lime. It can be concluded that carbonation improves the high-temperature resistance of cement pastes up to 500 degrees C, but this advantage is lost at temperatures over 600 degrees C

    Neighborhood Cognition Consistent Multi-Agent Reinforcement Learning

    Full text link
    Social psychology and real experiences show that cognitive consistency plays an important role to keep human society in order: if people have a more consistent cognition about their environments, they are more likely to achieve better cooperation. Meanwhile, only cognitive consistency within a neighborhood matters because humans only interact directly with their neighbors. Inspired by these observations, we take the first step to introduce \emph{neighborhood cognitive consistency} (NCC) into multi-agent reinforcement learning (MARL). Our NCC design is quite general and can be easily combined with existing MARL methods. As examples, we propose neighborhood cognition consistent deep Q-learning and Actor-Critic to facilitate large-scale multi-agent cooperations. Extensive experiments on several challenging tasks (i.e., packet routing, wifi configuration, and Google football player control) justify the superior performance of our methods compared with state-of-the-art MARL approaches.Comment: Accepted by AAAI2020 with oral presentation (https://aaai.org/Conferences/AAAI-20/wp-content/uploads/2020/01/AAAI-20-Accepted-Paper-List.pdf). Since AAAI2020 has started, I have the right to distribute this paper on arXi

    SpokenWOZ: A Large-Scale Speech-Text Benchmark for Spoken Task-Oriented Dialogue Agents

    Full text link
    Task-oriented dialogue (TOD) models have made significant progress in recent years. However, previous studies primarily focus on datasets written by annotators, which has resulted in a gap between academic research and real-world spoken conversation scenarios. While several small-scale spoken TOD datasets are proposed to address robustness issues such as ASR errors, they ignore the unique challenges in spoken conversation. To tackle the limitations, we introduce SpokenWOZ, a large-scale speech-text dataset for spoken TOD, containing 8 domains, 203k turns, 5.7k dialogues and 249 hours of audios from human-to-human spoken conversations. SpokenWOZ further incorporates common spoken characteristics such as word-by-word processing and reasoning in spoken language. Based on these characteristics, we present cross-turn slot and reasoning slot detection as new challenges. We conduct experiments on various baselines, including text-modal models, newly proposed dual-modal models, and LLMs, e.g., ChatGPT. The results show that the current models still have substantial room for improvement in spoken conversation, where the most advanced dialogue state tracker only achieves 25.65% in joint goal accuracy and the SOTA end-to-end model only correctly completes the user request in 52.1% of dialogues. The dataset, code, and leaderboard are available: https://spokenwoz.github.io/SpokenWOZ-github.io/
    corecore