31 research outputs found

    Molecular mechanisms of the cardiovascular protective effects of polyphenols

    Get PDF
    Epidemiological studies have reported a greater reduction in cardiovascular risk and metabolic disorders associated with diets rich in polyphenols. The antioxidant effects of polyphenols are attributed to the regulation of redox enzymes by reducing reactive oxygen species production from mitochondria, NADPH oxidases and uncoupled endothelial NO synthase in addition to also up-regulating multiple antioxidant enzymes. Although data supporting the effects of polyphenols in reducing oxidative stress are promising, several studies have suggested additional mechanisms in the health benefits of polyphenols. Polyphenols from red wine increase endothelial NO production leading to endothelium-dependent relaxation in conditions such as hypertension, stroke or the metabolic syndrome. Numerous molecules contained in fruits and vegetables can activate sirtuins to increase lifespan and silence metabolic and physiological disturbances associated with endothelial NO dysfunction. Although intracellular pathways involved in the endothelial effects of polyphenols are partially described, the molecular targets of these polyphenols are not completely elucidated. We review the novel aspects of polyphenols on several targets that could trigger the health benefits of polyphenols in conditions such as metabolic and cardiovascular disturbances

    Resveratrol: A Multifunctional Compound Improving Endothelial Function: Editorial to: “Resveratrol Supplementation Gender Independently Improves Endothelial Reactivity and Suppresses Superoxide Production in Healthy Rats” by S. Soylemez et al.

    Get PDF
    The red wine polyphenol resveratrol boosts endothelium-dependent and -independent vasorelaxations. The improvement of endothelial function by resveratrol is largely attributable to nitric oxide (NO) derived from endothelial NO synthase (eNOS). By stimulating eNOS expression, eNOS phosphorylation and eNOS deacetylation, resveratrol enhances endothelial NO production. By upregulating antioxidant enzymes (superoxide dismutase, catalase and glutathione peroxidase) and suppressing the expression and activity of NADPH oxidases, resveratrol inhibits superoxide-mediated NO inactivation. Some resveratrol effects are mediated by sirtuin 1 (SIRT1) or estrogen receptors, respectively

    Analysis of 16 studies in nine rodent models does not support the hypothesis that diabetic polyuria is a main reason of urinary bladder enlargement

    No full text
    The urinary bladder is markedly enlarged in the type 1 diabetes mellitus model of streptozotocin-injected rats, which may contribute to the frequent diabetic uropathy. Much less data exists for models of type 2 diabetes. Diabetic polyuria has been proposed as the pathophysiological mechanism behind bladder enlargement. Therefore, we explored such a relationship across nine distinct rodent models of diabetes including seven models of type 2 diabetes/obesity by collecting data on bladder weight and blood glucose from 16 studies with 2-8 arms each; some studies included arms with various diets and/or pharmacological treatments. Data were analysed for bladder enlargement and for correlations between bladder weight on the one and glucose levels on the other hand. Our data confirm major bladder enlargement in streptozotocin rats and minor if any enlargement in fructose-fed rats, db/db mice and mice on a high-fat diet; enlargement was present in some of five not reported previously models. Bladder weight was correlated with blood glucose as a proxy for diabetic polyuria within some but not other models, but correlations were moderate to weak except for RIP-LCMV mice (r(2) of pooled data from all studies 0.0621). Insulin levels also failed to correlate to a meaningful extent. Various diets and medications (elafibranor, empagliflozin, linagliptin, semaglutide) had heterogeneous effects on bladder weight that often did not match their effects on glucose levels. We conclude that the presence and extent of bladder enlargement vary markedly across diabetes models, particularly type 2 diabetes models; our data do not support the idea that bladder enlargement is primarily driven by glucose levels/glucosuria

    Magnetite–Polypyrrole Metacomposites: Dielectric Properties and Magnetoresistance Behavior

    No full text
    The conductive polypyrrole (PPy) polymer nanocomposites (PNCs) reinforced with different magnetite (Fe3O4) nanoparticle loadings have been successfully synthesized by using a facile surface initiated polymerization (SIP) method. The scanning electron microscope (SEM) is used to characterize the surface morphology of the as-received Fe3O 4 nanoparticles (NPs), pure PPy and Fe3O4/PPy PNCs. The high-resolution transmission electron microscope (HRTEM) is used to observe the nanoparticle dispersion within the polymer matrix. The chemical structure of the PNCs is characterized by Fourier transform infrared (FT-IR) spectroscopy. The thermal stability of the Fe3O4/PPy PNCs is assessed by thermogravimetric analysis (TGA). X-ray diffraction (XRD) results reveal that the addition of NPs has a significant effect on the crystallization of PPy. The switching frequency, at which the permittivity switches from negative to positive, is observed in the synthesized pure PPy and Fe 3O4/PPy PNCs. The optical band gap of Fe3O 4/PPy PNCs is studied by ultraviolet-visible diffuse reflectance spectroscopy (UV-vis DRS). The Fe3O4/PPy PNCs exhibit no hysteresis loop, indicating the superparamagnetic behavior. Temperature- dependent resistivity indicates a quasi-3-dimensional variable range hopping (VRH) electrical conduction mechanism for the synthesized samples. The positive magnetoresistance (MR) is observed in the synthesized pure PPy at room temperature and analyzed by the wave function shrinkage model. Meanwhile, the negative MR is obtained in the synthesized magnetic PNCs at room temperature and analyzed by the orbital magnetoconductivity theory (forward interference model). © 2013 American Chemical Society
    corecore