155 research outputs found

    P2-244: Effect of taxotere combination with celecoxib on proliferation of NSCLC cell

    Get PDF

    Graphene-oxide modified polyvinyl-alcohol as microbial carrier to improve high salt wastewater treatment

    Get PDF
    This work discussed the preparation and characterization of graphene oxide (GO) modified polyvinyl alcohol (PVA) for bacteria immobilization to enhance the biodegrdation efficiency of saline organic wastewater. GO-PVA material has lamellar structure with higher surface area to support bacterial growth and high salinity tolerance. It significantly stimulated the bacterial population by 1.4 times from 2.07×103 CFU/mL to 5.04×103 CFU/mL, and the microbial structure was also improved for salinity tolerance. Acinetobacter, Pseudomonas and Thermophilic hydrogen bacilli were enriched inside GO-PVA materials for glucose biodegradation. Compared to the CODCr removal efficiency with only PVA as the carrier (52.8%), GO-PVA material had better degradation performance (62.8%). It is proved as a good candidate for bioaugmentation to improve biodegradation efficiency in hypersaline organic wastewater

    Preparing and characterizing Fe3O4@cellulose nanocomposites for effective isolation of cellulose-decomposing microorganisms

    Get PDF
    This study developed Fe3O4@cellulose nanocomposites by co-precipitation synthesis for bacteria capture and isolation. By surface modification with cellulose, the Fe3O4@cellulose nanocomposites have 20 nm average particle size and 3.3–24.9 emu/g saturation magnetization. Living bacteria could be captured by the Fe3O4@cellulose nanocomposites and harvested by magnetic field, with high efficiency (95.1%) and stability (>99.99%). By metabolizing cellulose and destroying the Fe3O4@cellulose@bacteria complex, cellulose-decomposing microorganisms lost the magnetism. They were therefore able to be isolated from the inert microbial community and the separation efficiency achieved over 99.2%. This research opened a door to cultivate the uncultivable cellulose-decomposing microorganisms in situ and further characterize their ecological functions in natural environment

    Hit Ratio Driven Mobile Edge Caching Scheme for Video on Demand Services

    Full text link
    More and more scholars focus on mobile edge computing (MEC) technology, because the strong storage and computing capabilities of MEC servers can reduce the long transmission delay, bandwidth waste, energy consumption, and privacy leaks in the data transmission process. In this paper, we study the cache placement problem to determine how to cache videos and which videos to be cached in a mobile edge computing system. First, we derive the video request probability by taking into account video popularity, user preference and the characteristic of video representations. Second, based on the acquired request probability, we formulate a cache placement problem with the objective to maximize the cache hit ratio subject to the storage capacity constraints. Finally, in order to solve the formulated problem, we transform it into a grouping knapsack problem and develop a dynamic programming algorithm to obtain the optimal caching strategy. Simulation results show that the proposed algorithm can greatly improve the cache hit ratio
    • …
    corecore