141 research outputs found
Visual Saliency Based on Multiscale Deep Features
Visual saliency is a fundamental problem in both cognitive and computational
sciences, including computer vision. In this CVPR 2015 paper, we discover that
a high-quality visual saliency model can be trained with multiscale features
extracted using a popular deep learning architecture, convolutional neural
networks (CNNs), which have had many successes in visual recognition tasks. For
learning such saliency models, we introduce a neural network architecture,
which has fully connected layers on top of CNNs responsible for extracting
features at three different scales. We then propose a refinement method to
enhance the spatial coherence of our saliency results. Finally, aggregating
multiple saliency maps computed for different levels of image segmentation can
further boost the performance, yielding saliency maps better than those
generated from a single segmentation. To promote further research and
evaluation of visual saliency models, we also construct a new large database of
4447 challenging images and their pixelwise saliency annotation. Experimental
results demonstrate that our proposed method is capable of achieving
state-of-the-art performance on all public benchmarks, improving the F-Measure
by 5.0% and 13.2% respectively on the MSRA-B dataset and our new dataset
(HKU-IS), and lowering the mean absolute error by 5.7% and 35.1% respectively
on these two datasets.Comment: To appear in CVPR 201
Deep Contrast Learning for Salient Object Detection
Salient object detection has recently witnessed substantial progress due to
powerful features extracted using deep convolutional neural networks (CNNs).
However, existing CNN-based methods operate at the patch level instead of the
pixel level. Resulting saliency maps are typically blurry, especially near the
boundary of salient objects. Furthermore, image patches are treated as
independent samples even when they are overlapping, giving rise to significant
redundancy in computation and storage. In this CVPR 2016 paper, we propose an
end-to-end deep contrast network to overcome the aforementioned limitations.
Our deep network consists of two complementary components, a pixel-level fully
convolutional stream and a segment-wise spatial pooling stream. The first
stream directly produces a saliency map with pixel-level accuracy from an input
image. The second stream extracts segment-wise features very efficiently, and
better models saliency discontinuities along object boundaries. Finally, a
fully connected CRF model can be optionally incorporated to improve spatial
coherence and contour localization in the fused result from these two streams.
Experimental results demonstrate that our deep model significantly improves the
state of the art.Comment: To appear in CVPR 201
Recurrent Attentional Reinforcement Learning for Multi-label Image Recognition
Recognizing multiple labels of images is a fundamental but challenging task
in computer vision, and remarkable progress has been attained by localizing
semantic-aware image regions and predicting their labels with deep
convolutional neural networks. The step of hypothesis regions (region
proposals) localization in these existing multi-label image recognition
pipelines, however, usually takes redundant computation cost, e.g., generating
hundreds of meaningless proposals with non-discriminative information and
extracting their features, and the spatial contextual dependency modeling among
the localized regions are often ignored or over-simplified. To resolve these
issues, this paper proposes a recurrent attention reinforcement learning
framework to iteratively discover a sequence of attentional and informative
regions that are related to different semantic objects and further predict
label scores conditioned on these regions. Besides, our method explicitly
models long-term dependencies among these attentional regions that help to
capture semantic label co-occurrence and thus facilitate multi-label
recognition. Extensive experiments and comparisons on two large-scale
benchmarks (i.e., PASCAL VOC and MS-COCO) show that our model achieves superior
performance over existing state-of-the-art methods in both performance and
efficiency as well as explicitly identifying image-level semantic labels to
specific object regions.Comment: Accepted at AAAI 201
Instance-Level Salient Object Segmentation
Image saliency detection has recently witnessed rapid progress due to deep
convolutional neural networks. However, none of the existing methods is able to
identify object instances in the detected salient regions. In this paper, we
present a salient instance segmentation method that produces a saliency mask
with distinct object instance labels for an input image. Our method consists of
three steps, estimating saliency map, detecting salient object contours and
identifying salient object instances. For the first two steps, we propose a
multiscale saliency refinement network, which generates high-quality salient
region masks and salient object contours. Once integrated with multiscale
combinatorial grouping and a MAP-based subset optimization framework, our
method can generate very promising salient object instance segmentation
results. To promote further research and evaluation of salient instance
segmentation, we also construct a new database of 1000 images and their
pixelwise salient instance annotations. Experimental results demonstrate that
our proposed method is capable of achieving state-of-the-art performance on all
public benchmarks for salient region detection as well as on our new dataset
for salient instance segmentation.Comment: To appear in CVPR201
- …