141 research outputs found

    Visual Saliency Based on Multiscale Deep Features

    Get PDF
    Visual saliency is a fundamental problem in both cognitive and computational sciences, including computer vision. In this CVPR 2015 paper, we discover that a high-quality visual saliency model can be trained with multiscale features extracted using a popular deep learning architecture, convolutional neural networks (CNNs), which have had many successes in visual recognition tasks. For learning such saliency models, we introduce a neural network architecture, which has fully connected layers on top of CNNs responsible for extracting features at three different scales. We then propose a refinement method to enhance the spatial coherence of our saliency results. Finally, aggregating multiple saliency maps computed for different levels of image segmentation can further boost the performance, yielding saliency maps better than those generated from a single segmentation. To promote further research and evaluation of visual saliency models, we also construct a new large database of 4447 challenging images and their pixelwise saliency annotation. Experimental results demonstrate that our proposed method is capable of achieving state-of-the-art performance on all public benchmarks, improving the F-Measure by 5.0% and 13.2% respectively on the MSRA-B dataset and our new dataset (HKU-IS), and lowering the mean absolute error by 5.7% and 35.1% respectively on these two datasets.Comment: To appear in CVPR 201

    Deep Contrast Learning for Salient Object Detection

    Get PDF
    Salient object detection has recently witnessed substantial progress due to powerful features extracted using deep convolutional neural networks (CNNs). However, existing CNN-based methods operate at the patch level instead of the pixel level. Resulting saliency maps are typically blurry, especially near the boundary of salient objects. Furthermore, image patches are treated as independent samples even when they are overlapping, giving rise to significant redundancy in computation and storage. In this CVPR 2016 paper, we propose an end-to-end deep contrast network to overcome the aforementioned limitations. Our deep network consists of two complementary components, a pixel-level fully convolutional stream and a segment-wise spatial pooling stream. The first stream directly produces a saliency map with pixel-level accuracy from an input image. The second stream extracts segment-wise features very efficiently, and better models saliency discontinuities along object boundaries. Finally, a fully connected CRF model can be optionally incorporated to improve spatial coherence and contour localization in the fused result from these two streams. Experimental results demonstrate that our deep model significantly improves the state of the art.Comment: To appear in CVPR 201

    Recurrent Attentional Reinforcement Learning for Multi-label Image Recognition

    Full text link
    Recognizing multiple labels of images is a fundamental but challenging task in computer vision, and remarkable progress has been attained by localizing semantic-aware image regions and predicting their labels with deep convolutional neural networks. The step of hypothesis regions (region proposals) localization in these existing multi-label image recognition pipelines, however, usually takes redundant computation cost, e.g., generating hundreds of meaningless proposals with non-discriminative information and extracting their features, and the spatial contextual dependency modeling among the localized regions are often ignored or over-simplified. To resolve these issues, this paper proposes a recurrent attention reinforcement learning framework to iteratively discover a sequence of attentional and informative regions that are related to different semantic objects and further predict label scores conditioned on these regions. Besides, our method explicitly models long-term dependencies among these attentional regions that help to capture semantic label co-occurrence and thus facilitate multi-label recognition. Extensive experiments and comparisons on two large-scale benchmarks (i.e., PASCAL VOC and MS-COCO) show that our model achieves superior performance over existing state-of-the-art methods in both performance and efficiency as well as explicitly identifying image-level semantic labels to specific object regions.Comment: Accepted at AAAI 201

    Instance-Level Salient Object Segmentation

    Full text link
    Image saliency detection has recently witnessed rapid progress due to deep convolutional neural networks. However, none of the existing methods is able to identify object instances in the detected salient regions. In this paper, we present a salient instance segmentation method that produces a saliency mask with distinct object instance labels for an input image. Our method consists of three steps, estimating saliency map, detecting salient object contours and identifying salient object instances. For the first two steps, we propose a multiscale saliency refinement network, which generates high-quality salient region masks and salient object contours. Once integrated with multiscale combinatorial grouping and a MAP-based subset optimization framework, our method can generate very promising salient object instance segmentation results. To promote further research and evaluation of salient instance segmentation, we also construct a new database of 1000 images and their pixelwise salient instance annotations. Experimental results demonstrate that our proposed method is capable of achieving state-of-the-art performance on all public benchmarks for salient region detection as well as on our new dataset for salient instance segmentation.Comment: To appear in CVPR201
    • …
    corecore