118 research outputs found

    Microbial Succession and Nitrogen Cycling in Cultured Biofilms as Affected by the Inorganic Nitrogen Availability

    Get PDF
    Biofilms play important roles in nutrients and energy cycling in aquatic ecosystems. We hypothesized that as eutrophication could change phytoplankton community and decrease phytoplankton diversity, ambient inorganic nitrogen level will affect the microbial community and diversity of biofilms and the roles of biofilms in nutrient cycling. Biofilms were cultured using a flow incubator either with replete inorganic nitrogen (N-rep) or without exogenous inorganic nitrogen supply (N-def). The results showed that the biomass and nitrogen and phosphorous accumulation of biofilms were limited by N deficiency; however, as expected, the N-def biofilms had significantly higher microbial diversity than that of N-rep biofilms. The microbial community of biofilms shifted in composition and abundance in response to ambient inorganic nitrogen level. For example, as compared between the N-def and the N-rep biofilms, the former consisted of more diazotrophs, while the latter consisted of more denitrifying bacteria. As a result of the shift of the functional microbial community, the N concentration of N-rep medium kept decreasing, while that of N-def medium showed an increasing trend in the late stage. This indicates that biofilms can serve as the source or the sink of nitrogen in aquatic ecosystems, and it depends on the inorganic nitrogen availability.</p

    A niche model to predict Microcystis bloom decline in Chaohu Lake, China

    Get PDF
    Cyanobacterial blooms occur frequently in lakes due to eutrophication. Although a number of models have been proposed to forecast algal blooms, a good and applicable method is still lacking. This study explored a simple and effective mathematical-ecological model to evaluate the growth status and predict the population dynamics of Microcystis blooms. In this study, phytoplankton were collected and identified from 8 sampling sites in Chaohu Lake every month from July to October, 2010. The niche breadth and niche overlap of common species were calculated using standard equations, and the potential relative growth rates of Microcystis were calculated as a weighted-value of niche overlap. In July, the potential relative growth rate was 2.79 (a.u., arbitrary units) but then rapidly declined in the following months to -3.99 a.u. in September. A significant correlation (R =0.998, P < 0.01) was found in the model between the net-increase in biomass of Microcystis in the field and the predicted values calculated by the niche model, we concluded that the niche model is suitable for forecasting the dynamics of Microcystis blooms. Redundancy analysis indicated that decreases in water temperature, dissolved oxygen and total dissolved phosphorus might be major factors underlying bloom decline. Based on the theory of community succession being caused by resource competition, the growth and decline of blooms can be predicted from a community structure. This may provide a basis for early warning and control of algal blooms.Cyanobacterial blooms occur frequently in lakes due to eutrophication. Although a number of models have been proposed to forecast algal blooms, a good and applicable method is still lacking. This study explored a simple and effective mathematical-ecological model to evaluate the growth status and predict the population dynamics of Microcystis blooms. In this study, phytoplankton were collected and identified from 8 sampling sites in Chaohu Lake every month from July to October, 2010. The niche breadth and niche overlap of common species were calculated using standard equations, and the potential relative growth rates of Microcystis were calculated as a weighted-value of niche overlap. In July, the potential relative growth rate was 2.79 (a.u., arbitrary units) but then rapidly declined in the following months to -3.99 a.u. in September. A significant correlation (R =0.998, P < 0.01) was found in the model between the net-increase in biomass of Microcystis in the field and the predicted values calculated by the niche model, we concluded that the niche model is suitable for forecasting the dynamics of Microcystis blooms. Redundancy analysis indicated that decreases in water temperature, dissolved oxygen and total dissolved phosphorus might be major factors underlying bloom decline. Based on the theory of community succession being caused by resource competition, the growth and decline of blooms can be predicted from a community structure. This may provide a basis for early warning and control of algal blooms

    An integrated method for removal of harmful cyanobacterial blooms in eutrophic lakes

    Get PDF
    As the eutrophication of lakes becomes an increasingly widespread phenomenon, cyanobacterial blooms are occurring in many countries. Although some research has been reported, there is currently no good method for bloom removal. We propose here a new two-step integrated approach to resolve this problem. The first step is the inactivation of the cyanobacteria via the addition of H(2)O(2). We found 60 mg/L was the lowest effective dose for a cyanobacterial concentration corresponding to 100 mu g/L chlorophylla. The second step is the flocculation and sedimentation of the inactivated cyanobacteria. We found the addition of lake sediment clay (2 g/L) plus polymeric ferric sulfate (20 mg/L) effectively deposited them on the lake bottom. Since algaecides and flocculants had been used separately in previous reports, we innovatively combined these two types of reagents to remove blooms from the lake surface and to improve the dissolved oxygen content of lake sediments. (C) 2011 Elsevier Ltd. All rights reserved.As the eutrophication of lakes becomes an increasingly widespread phenomenon, cyanobacterial blooms are occurring in many countries. Although some research has been reported, there is currently no good method for bloom removal. We propose here a new two-step integrated approach to resolve this problem. The first step is the inactivation of the cyanobacteria via the addition of H(2)O(2). We found 60 mg/L was the lowest effective dose for a cyanobacterial concentration corresponding to 100 mu g/L chlorophylla. The second step is the flocculation and sedimentation of the inactivated cyanobacteria. We found the addition of lake sediment clay (2 g/L) plus polymeric ferric sulfate (20 mg/L) effectively deposited them on the lake bottom. Since algaecides and flocculants had been used separately in previous reports, we innovatively combined these two types of reagents to remove blooms from the lake surface and to improve the dissolved oxygen content of lake sediments. (C) 2011 Elsevier Ltd. All rights reserved

    Effects of sand burial on biomass, chlorophyll fluorescence and extracellular polysaccharides of man-made cyanobacterial crusts under experimental conditions

    Get PDF
    Soil cyanobacterial crusts occur throughout the world, especially in the semiarid and arid regions. It always encounters sand burial, which is an important feature of mobile sand dunes. A greenhouse 41 study was conducted to determine the effects of sand burial on biomass, chlorophyll fluorescence and extracellular polysaccharides of man-made cyanobacterial crusts in six periods of time (0, 5, 10, 15, 20 and 30 d after burying) and at five depths (0, 0.2, 0.5, 1 and 2cm). The results indicated that with the increase of the burial time and burial depth extracellular polysaccharides content and Fv/Fm decreased correspondingly and there were no significant differences between 20 and 30 burial days under different burial depths. The degradation of chlorophyll a content appeared only at 20 and 30 burial days and there was also no significant difference between them under different burial depths. It was also observed a simultaneous decrease of the values of the Fv/Fm and the content of extracellular polysaccharides happened in the crusted cyanobacterium Microcoleus vaginatus Gom. It may suggest that there exists a relationship between extracellular polysaccharides and recovery of the activity of photosystem II (PS II) after rehydration.Soil cyanobacterial crusts occur throughout the world, especially in the semiarid and arid regions. It always encounters sand burial, which is an important feature of mobile sand dunes. A greenhouse 41 study was conducted to determine the effects of sand burial on biomass, chlorophyll fluorescence and extracellular polysaccharides of man-made cyanobacterial crusts in six periods of time (0, 5, 10, 15, 20 and 30 d after burying) and at five depths (0, 0.2, 0.5, 1 and 2cm). The results indicated that with the increase of the burial time and burial depth extracellular polysaccharides content and Fv/Fm decreased correspondingly and there were no significant differences between 20 and 30 burial days under different burial depths. The degradation of chlorophyll a content appeared only at 20 and 30 burial days and there was also no significant difference between them under different burial depths. It was also observed a simultaneous decrease of the values of the Fv/Fm and the content of extracellular polysaccharides happened in the crusted cyanobacterium Microcoleus vaginatus Gom. It may suggest that there exists a relationship between extracellular polysaccharides and recovery of the activity of photosystem II (PS II) after rehydration

    Mitochondrial electron transport chain is involved in microcystin-RR induced tobacco BY-2 cells apoptosis

    No full text
    Microcystin-RR (MC-RR) has been suggested to induce apoptosis in tobacco BY-2 cells through mitochondrial dysfunction including the loss of mitochondrial membrane potential (Delta Psi(m)). To further elucidate the mechanisms involved in MC-RR induced apoptosis in tobacco BY-2 cells, we have investigated the role of mitochondrial electron transport chain (ETC) as a potential source for reactive oxygen species (ROS). Tobacco BY-2 cells after exposure to MC-RR (60 mg/L) displayed apoptotic changes in association with an increased production of ROS and loss of Delta Psi(m). All of these adverse effects were significantly attenuated by ETC inhibitors including Rotenone (2 mu mol/L, complex I inhibitor) and antimycin A (0.01 mu mol/L, complex III inhibitor), but not by thenoyltrifluoroacetone (5 mu mol/L, complex II inhibitor). These results suggest that mitochondrial ETC plays a key role in mediating MC-RR induced apoptosis in tobacco BY-2 cells through an increased mitochondrial production of ROS. (C) 2014 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V

    Decomposition of cyanobacterial bloom contributes to the formation and distribution of iron-bound phosphorus (Fe-P): Insight for cycling mechanism of internal phosphorus loading

    No full text
    Lake eutrophication and the resulting cyanobacterial blooms have become a global water environment problem. These eutrophic lakes usually have relatively high internal phosphorus loading such as Fe-P to support the formation of cyanobacterial blooms. In order to reveal the mechanisms and processes of phosphorus cycling in lake sediments, in this study, Lake Chaohu was selected as the research area, and the effects of cyanobacterial bloom decomposition on the horizontal distribution pattern of Fe-P was studied by field investigation and laboratory simulations. According to the phosphorus fractions in the sediments, Lake Chaohu can be divided into three lake areas, and the Fe-P content in western Chaohu is the highest (908.6 +/- 54.9 mg kg(-1)). The contents and proportions of Fe-P were significantly positively correlated with cyanobacterial pigments in sediments, but they negatively correlated with undegraded chl-a, especially when the Fe-P content was &lt;400 mg kg(-1). Based on these statistical analyses, we proposed a hypothesis that the settled cyanobacterial organic matters (COM) could promote the formation of Fe-P. This hypothesis was proved by the simulation experiments of adding COM to the oligotrophic lakeshore clay. The results suggested that the content and proportion of Fe-P in sediments were significantly increased by the COM addition, and also, they were significantly positively correlated with the decomposition of the COM. The formation processes of Fe-P were further confirmed by the analysis of Fourier transform infrared (FT-IR) spectra. Microbial community analysis suggested that the bacterial species including FeOB and genus Pseudomonas might play an important role in the formation of Fe-P. This study suggested that the settled COM could enhance the eutrophication of sediments through a positive feedback cycle. Therefore, it is necessary to carry out bloom removal and sediment dredging simultaneously, and only then the cyanobacterial bloom can be effectively controlled. (C) 2018 Elsevier B.V. All rights reserved.</p

    PHOTOSYNTHETIC ACTIVITY OF Microcystis IN FISH GUTS AND ITS IMPLICATION FOR FEASIBILITY OF BLOOM CONTROL BY FILTER-FEEDING FISHES

    No full text
    In a background of increasingly frequent and intensive Microcystis blooms occurred in eutrophic lakes, many countries, particularly China, have used filter-feeding fish to control algal blooms according to non-traditional biomanipulation theory. However, there is little information concerning the potential photosynthetic activity of cyanobacteria in the guts of planktivorous fishes. To make a scientific assessment of this algal control technology, we evaluated the effects of digestion by two fish species, silver carp and bighead carp, on the growth potential of Microcystis blooms in terms of photosynthetic activity, metabolic activity, up-floating velocity, morphological size, and toxin production. The results showed that: 1) the potential photosynthetic activity of Microcystis dropped significantly in fish foreguts after ingestion, but gradually increased and recovered in the midgut and hindgut; 2) digestion by planktivorous fish could significantly decrease the colonial size and up-floating velocity of Microcystis; 3) selective digestion by bighead carp caused a sharp rise in cellular microcystin levels; and 4) Microcystis retained a high growth potential after digestion by filter-feeding fish. These results indicate that planktivorous fish could be used for controlling blooms due to the degree of digestion and long retention of Microcystis in fish guts, but the controlling effect was limited because the potential photosynthesis activity of algae gradually recovered along the gut sections and the digested algae could grow normally after subsequent release into lakes. In addition to being less effective at controlling algal blooms than silver carp, the digestion process in bighead carp might confer an advantage to toxic Microcystis species
    • …
    corecore