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  Abstract         Cyanobacterial blooms occur frequently in lakes due to eutrophication. Although a number 
of models have been proposed to forecast algal blooms, a good and applicable method is still lacking. 
This study explored a simple and effective mathematical-ecological model to evaluate the growth status 
and predict the population dynamics of  Microcystis  blooms. In this study, phytoplankton were collected 
and identifi ed from 8 sampling sites in Chaohu Lake every month from July to October, 2010. The niche 
breadth and niche overlap of common species were calculated using standard equations, and the potential 
relative growth rates of  Microcystis  were calculated as a weighted-value of niche overlap. In July, the 
potential relative growth rate was 2.79 (a.u., arbitrary units) but then rapidly declined in the following 
months to -3.99 a.u. in September. A signifi cant correlation ( R =0.998,  P <0.01) was found in the model 
between the net-increase in biomass of  Microcystis  in the fi eld and the predicted values calculated by the 
niche model, we concluded that the niche model is suitable for forecasting the dynamics of  Microcystis  
blooms. Redundancy analysis indicated that decreases in water temperature, dissolved oxygen and 
total dissolved phosphorus  might be major factors underlying bloom decline. Based on the theory of 
community succession being caused by resource competition, the growth and decline of blooms can be 
predicted from a community structure. This may provide a basis for early warning and control of algal 
blooms. 
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 1 INTRODUCTION 

 In recent decades, lake eutrophication has become 
increasingly serious in the middle and lower reaches 
of the Changjiang (Yangtze) River Plain, causing 
cyanobacterial blooms in most of the large shallow 
lakes (Yang et al., 2006; Chen et al., 2007; Xing et 
al., 2007). Various physicochemical factors, biotic 
effects and hydro-meteorological characteristics 
have been assumed to be main reasons for 
cyanobacterial blooms (Paerl et al., 2001; Jin and 
Wang, 2006; Jiang et al., 2008; Goleski et al., 2010; 
Wang et al., 2011a). Many models have been 
developed to predict the dynamics of cyanobacterial 
blooms. Statistical methods, such as regression 
analysis and correlation analysis have commonly 
been used to fi t curves of algal biomass to 
environmental factors to forecast the growth and 

decline of blooms (Chen et al., 2001; Lane et al., 
2009). However, these analyses require a large 
number of samples and may lead to erroneous results 
because of the time lag between algal community 
development and changes in environmental status. 
Therefore, due to slow model training speed, and 
complicated calculations required for artifi cial 
neural networks (ANN model) (Li et al., 2007; Wang 
et al., 2010a), these predictive models have been 
abandoned by most researchers. 

 A good model should include two important 
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characteristics: simplicity and reliability. Such a 
simple and reliable model is required for bloom 
prediction. Niche models, which have been commonly 
applied to higher plant populations (Thompson et al., 
1999; Shi et al., 2007), may be a suitable choice for 
bloom prediction. Although there have been some 
applications of niche models in aquatic system to 
calculate niche breadth and niche overlap (Ludwig 
and Reynolds, 1988), niche models have not been 
used to predict phytoplankton community succession 
or in particular cyanobacterial blooms. 

 Niche is a basic concept in modern biology 
(Leibold, 1995). Studies on niche are fundamental 
for understanding species relationships, species 
diversity, community structures and community 
succession (Zhang, 2004). For a phytoplankton 
community structure, niche breadth and niche 
overlap are two important variables that can be 
calculated using mathematical equations. These two 
variables are generally considered as decisive factors 
for community structure and sometimes refl ect the 
structural stability of a community. They may also 
reveal the ability of resource utilization and 
functional status of some species. In this paper, the 
use of ecological niche models to forecast 
cyanobacterial bloom is examined. Growth and 
decline of blooms were predicted from community 
structure, based on the theory of community 
succession due to resource competition. The 
principles, construction, and parameterization of the 
ecological niche model applied in Chaohu Lake are 
presented. This study may provide a basis for early 
warning systems and control methods for algal 
blooms. 

 2 MATERIAL AND METHOD 

 2.1 Study site and sampling method 

 The Chaohu Lake (31°25′28′′–31°43′28′′N, 
117°16′54′′–117°51′46′′E) is located in the delta 
region of the Changjiang River in eastern China. It 
has a mean surface area of 770 km 2 , a mean depth of 
2.7 m, and a storage capacity of 2.1 billion m 3 . Before 
the 1950s, it was well known for its scenic beauty and 
richness of aquatic life. However, the lake is currently 
facing a threat of serious eutrophication (Zhang et al., 
2008). Every year during warm season, dense 
cyanobacterial blooms (mainly composed of genus 
 Microcystis  and genus  Anabaena ) are observed in the 
lake (Xu et al., 2007). Based on geographical features 
and pollution status, 8 sampling sites were chosen 

(Fig.1). Samples were collected, measured and 
analyzed using the following methods. 

 2.2 Physicochemical parameter measurement 

 Dissolved oxygen (DO) and water temperature 
(WT) were measured using a portable dissolved-
oxygen meter (YSI 550A). pH was recorded using a 
portable pH meter (YSI 63). Total nitrogen (TN), 
ammonia (NH  4   +   -N) and total phosphorus (TP) were 
analyzed according to Wang et al. (2010b). Total 
dissolved phosphorus (TDP) was measured in the 
same way as TP after water fi ltration through cellulose 
acetate membranes (Kenker, USA) of 0.45 μm. 
Chlorophyll a was extracted and measured 
spectrophotometrically as described by Parsons and 
Strickland (1963). Transparency (SD) was determined 
using a secchi disc.  

 2.3 Phytoplankton identifi cation and niche 
variables analysis 

 Samples (500 mL) were collected vertically in 
every station from surface layer (10 cm below water 
surface) monthly July to October, 2010. Samples 
were fi xed immediately with Lugol’s solution and 
then concentrated by using a siphon pipe, to 60 mL 
after standing for 48 h. Subsequently, 0.1 mL from 
each concentrated sample was assayed for numbers 
and types of phytoplankton using a microscope. 
Calculations of niche breadth and niche overlap were 
made using the most common species observed in 
July, August, September, and October. Niche breadth 
analysis followed Eqs.1 and 2 of Levins (1968), and 
niche overlap was calculated using Eqs.2 and 3 
proposed by Petraitis (1979).  
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 Fig.1 Sampling sites in Chaohu Lake 
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w here,  Bi  denotes the niche breadth;  P  ij  is the resource 
occupied by species  i  ( n  ij ) in comparison with the total 
resource ( N  i+ ) in site  j ;  SO  ik  is niche overlap of species i 
versus species k;  E  ik  is exponent of niche overlap of species 
i versus species k;  i  and  k  are species of phytoplankton;  r  is 
total number of sampling sites;  j  is a specifi c sampling site. 

 2.4 Correlation analyses 

 Redundancy analysis (RDA) (Canoco for Windows 
4.5 software) was used to examine the correlations 
between the environmental factors and phytoplankton 
species. The species chosen to perform RDA should 
satisfy two conditions: the fi rst condition is that the 
frequency of the chosen species at all sampling sites 
should be greater than 12.5%; and the second is that 
the relative population density of this species in at 
least one sampling site should exceed 1%. 

 3 RESULT 

 3.1 Dominant species of phytoplankton during the 
bloom period in Chaohu Lake 

 Five phyla, 49 genera and 78 species were observed 
in the phytoplankton community from July to October, 
2010. The main phyla were Cyanophyta and 
Chlorophyta, and  Microcystis  was the absolute 
dominant genus during the investigation period. 
Based on species frequencies, 35 species that  
appeared in all months were chosen to calculate niche 
variables (Table 1).  

 3.2 Changes in the niche breadth of phytoplankton 
during the bloom period 

 The niche breadth of  Microcystis  was 8.37 in July, 
the highest value during the entire study period. It 
then decreased signifi cantly in August, September, 
and October (Fig.2). However, with the niche breadth 
decrease of  Microcystis  in August, the niche breadth 
of other species, such as  Anabaena  increased slightly, 
suggesting a succession between  Microcystis  and 
other cyanobacteria had occurred within the 
Cyanophyta. Similarly, the niche breadth of 

 Table 1 Index of dominant phytoplankton in Chaohu Lake from July to October, 2010 

Index Species Index Species

      Cyanophyta  18   Kirchneria     subcapitata  

 1*   Microcystis   19   Scenedesmus     quadricauda  

 2   Dactylococcopsis   20   Scenedesmus     platydiscus  

 3   Aphanizomenon   21   Scenedesmus     denticulatus  Lag. 

 4   Chroococcus   22   Schroederia     nitzschioides  

 5   Merismopedia     punctata   23   Scenedesmus     cavinatus  

 6   Phormidium     tenue   24   Crucigenia     quadrata  

 7   Anabaena   fl os-aquae   25   Chlamydomonas  

       Cryptophyta  26   Ankistrodesmus     spiralis  

 8   Chroomonas     acuta   27   Closterium     parvulum  

 9   Cryptomonas     erosa   28   Tetrastrum     staurogeniaeforme  

 10   Cryptomonas     ovata   29   Staurastrum     manfeldtii  

       Chlorophyta         Bacillariophyta 

 11   Chlorella vulgaris   30   Cyclotella  

 12   Palmellococcus  sp.  31   Stephanodiscus     astraea  

 13   Eudorina     elegans   32   Melosira     granulata   var.   angustissima  

 14   Tetraedron     triangulare   33   Melosira     granulata  

 15   Tetraedron   minimum   34   Melosira  sp. 

 16   Pediastrum   simplex var.   duodenarium           Pyrrophyta 

 17   Pediastrum     biradiatum   35   Ceratium     hirundinella  

    * Given number for each species .
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Cryptophyta, Chlorophyta, Bacillariophyta and 
Pyrrhophyta also increased (Table 2) in August. In 
September, not only  Microcystis  but also all other 
cyanobacteria declined in niche breadth, while the 
niche breadths of other algae gradually expanded. 
The phytoplankton community dominated by 
Cyanophyta became a community characterized by 
Chlorophyta. All algae, except Bacillariophyta, 
exhibited a marked decrease in niche breadth in 
October, especially Cryptophyta and Chlorophyta 
(Table 2). 

 3.3 Resource availability and niche overlap of 
phytoplankton in Chaohu Lake 

 The weighted-value of niche overlap ( SOij
i
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and species potential growth rate (ΔSO ij = SOij
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are shown in Table 3. The negative values of Δ SO  ij  
suggested that some species were declining even 
though they occupied a high resource status as shown 

by SOij
i

n

=
∑
1

. In July, the ΔSO ij  of  Microcystis  was 

positive (3.81 a.u.), suggesting that  Microcystis  was 
growing and a more serious bloom might result. Then, 
it sharply decreased to -6.09 a.u., -12.00 a.u. and -2.68 

a.u. in August, September and October, respectively, 
indicating that 1) the bloom began to decline in 
August and 2) the most signifi cant decline was 
occurred in September (Table 3). The weighted-

values of niche overlap ( SOij
i

n

=
∑
1

   or SOij
i

m

=
∑
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) in October 

(4.92 a.u. and 5.92 a.u. respectively) were signifi cantly 
lower than those in September (9.12 a.u. and 11.52 
a.u. respectively) (Table 3). 

 The average ΔSO ij  of all species in Cyanophyta was 
as low as -0.14 a.u. in July, and decreased to a lower 
value (-2.38 a.u.) in August (Table 4), closely related to 
the decline of cyanobacteria, especially  Microcystis . In 
this  Microcystis  decline period, an increase and decline 

 Table 2 Average niche breadth of different phyla of 
phytoplankton in Chaohu Lake 

 Category of 
phytoplankton  July  August  September  October 

  Cyanophyta   3.30±2.37  3.20±0.76  2.68±1.46  2.63±0.97 

  Cryptophyta   2.20±1.01  2.97±0.93  3.28±0.31  1.78±0.84 

  Chlorophyta   2.65±1.64  2.80±1.66  3.62±2.10  2.37±1.23 

  Bacillariophyta   3.42±1.85  3.60±1.58  4.14±2.79  4.10±1.94 

  Pyrrophyta   1.14±0.00  2.36±0.00  1.60±0.00  1.10±0.00 

 Fig.2  Niche breadth of phytoplankton in Chaohu Lake in July (a), August (b), September (c), and December (d), 2010 
 Numbers in the x axis correspond to those in Table 1 (N° is the species identifi cation), and a.u. = arbitrary units. 
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 Table 3 Resource availability and niche overlap of phytoplankton in Chaohu Lake 

 Species 
number 

 July  August  September  October 
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 ΔSO ij  

  1   7.37  4.57  3.81  4.14  10.23  -6.09  10.09  22.09  -12.00  4.47  7.15  -2.68 

  2   5.50  5.18  0.33  6.66  6.19  0.48  8.98  9.34  -0.36  3.96  7.43  -3.46 

  3   4.24  6.02  -1.78  6.62  3.64  2.98  9.33  16.38  -7.05  7.38  8.94  -1.56 

  4   7.65  5.14  2.51  7.20  8.84  -1.64  8.59  5.72  2.87  5.07  4.81  0.26 

  5   5.47  5.76  -0.29  6.90  12.28  -5.38  12.45  4.88  7.58  6.49  4.58  1.90 

  6   4.46  4.29  0.17  4.99  3.87  1.12  8.00  5.62  2.38  4.33  6.23  -1.90 

  7   4.55  9.29  -4.74  5.85  13.97  -8.12  6.70  6.65  0.05  4.86  11.22  -6.36 

  8   7.44  7.54  -0.10  7.46  9.38  -1.92  9.35  13.49  -4.15  4.60  3.44  1.16 

  9   3.98  3.02  0.96  7.99  7.99  -0.01  7.09  6.27  0.81  3.76  3.55  0.21 

  10   4.96  2.12  2.84  7.62  5.91  1.71  8.45  9.24  -0.79  4.60  1.64  2.96 

  11   5.12  8.68  -3.56  8.22  11.55  -3.33  6.00  2.73  3.27  3.58  3.85  -0.27 

  12   6.22  13.40  -7.18  7.09  21.19  -14.10  10.40  25.20  -14.80  3.74  10.14  -6.40 

  13   7.74  3.14  4.60  8.76  3.10  5.67  9.99  7.59  2.40  5.19  1.07  4.12 

  14   5.31  6.15  -0.83  7.88  6.43  1.45  6.80  4.71  2.09  2.98  3.35  -0.38 

  15   5.05  2.22  2.83  5.56  3.49  2.08  5.75  1.17  4.58  5.13  3.36  1.77 

  16   5.98  3.92  2.05  5.00  8.93  -3.94  10.12  20.31  -10.19  4.13  7.32  -3.18 

  17   4.97  6.90  -1.92  7.97  8.14  -0.17  9.86  13.42  -3.57  3.84  5.34  -1.50 

  18   6.10  4.26  1.84  5.86  6.93  -1.07  8.68  10.20  -1.51  3.97  2.73  1.24 

  19   4.71  16.57  -11.86  7.37  15.25  -7.88  10.40  23.06  -12.66  4.16  9.59  -5.43 

  20   5.71  6.81  -1.11  7.51  18.62  -11.11  9.24  20.61  -11.37  3.92  4.08  -0.16 

  21   11.10  5.21  5.88  7.55  4.14  3.42  5.58  2.50  3.08  3.84  5.50  -1.66 

  22   4.52  2.92  1.60  9.06  4.22  4.84  8.16  9.42  -1.26  6.34  5.50  0.85 

  23   9.94  4.97  4.97  3.71  2.82  0.90  10.50  6.69  3.82  6.60  4.96  1.65 

  24   4.55  3.58  0.98  4.57  2.01  2.56  12.41  4.92  7.49  3.51  7.41  -3.91 

  25   4.92  8.12  -3.20  8.23  8.18  0.04  7.65  8.03  -0.38  11.29  7.88  3.42 

  26   6.69  3.25  3.44  7.20  11.95  -4.76  9.48  21.74  -12.26  3.41  5.53  -2.12 

  27   5.35  13.76  -8.41  6.27  6.30  -0.03  9.03  17.38  -8.35  6.97  8.85  -1.88 

  28   4.37  4.23  0.14  10.30  3.88  6.43  8.49  7.05  1.44  4.80  3.03  1.77 

  29   4.76  2.63  2.13  8.09  6.79  1.30  8.89  8.35  0.54  4.49  2.31  2.17 

  30   5.14  12.30  -7.16  7.16  17.56  -10.40  9.84  21.51  -11.66  3.43  14.08  -10.65 

  31   5.39  12.67  -7.29  6.40  18.87  -12.47  10.92  23.31  -12.39  4.66  11.14  -6.48 

  32   6.34  2.93  3.42  7.80  11.61  -3.81  12.45  6.50  5.95  3.91  3.16  0.75 

  33   4.14  5.56  -1.41  7.88  14.45  -6.57  10.69  23.85  -13.16  4.81  8.31  -3.50 

  34   5.14  11.81  -6.67  8.17  5.02  3.15  9.44  5.14  4.30  3.58  3.77  -0.19 

  35   9.89  6.29  3.60  7.28  6.50  0.78  9.43  8.08  1.35  10.37  5.99  4.38 

  Average   5.85  
(1.71) 

 6.43  
(3.73) 

 -0.58  
(4.27) 

 7.04
  (1.42) 

 8.86 
(5.10) 

 -1.83  
(5.22) 

 9.12  
(1.74) 

 11.52  
(7.37) 

 -2.40
  (6.80) 

 4.92
  (1.82) 

 5.92
  (3.03) 

 -1.00
  (3.37) 

 Note: SOij
i

n

=
∑
1

: the resource status that species  i  occupies in comparison to other algae; SOij
i

m

=
∑
1

: the resource status of species  i  which is occupied by other 

algae; ΔSO ij : species potential growth rate;  m and n are line number and column number of niche overlap matrix, respectively.
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process of Chlorophyta occurred, suggested by a 
positive ΔSO ij  (1.23 a.u.) in July and a high negative 
ΔSO ij  (-1.38 a.u.) in September, respectively. In October 
(Table 4) the ΔSO ij  of Chlorophyta gradually increased 
to a positive value (1.44 a.u.). 

 3.4 Major driving forces of  Microcystis  bloom 
decline 

 The correlation between environmental factors and 
phytoplankton variation, as shown in Fig.3, revealed 
the effects of environmental factors on algae, 
especially on the dominant species in the community, 
 Microcystis . The analysis results were considered 
reliable as the correlation coeffi cient between fi rst 
and second RDA axis was very low (almost zero). It 
can be concluded from RDA analysis that WT, DO 
and TDP were signifi cantly positively correlated with 
 Microcystis  biomass, while SD had a negative, but 
insignifi cant correlation with  Microcystis  biomass. 

 3.5 Predictive validity of the ecological niche model 
for  Microcystis  bloom decline 

 The net-increase in biomass of    Microcystis  was 
expressed by the difference in biomass between two 
consecutive months. The pattern of net-increase in 
biomass was recorded in the fi eld was very similar 
with the predicted trend calculated using the niche 
model. The correlation between actual biomass and 
the predicted potential growth rate (ΔSO ij ) was 
signifi cant ( R =0.988,  P <0.01) (Fig.4). The ΔSO ij  of 
 Microcystis  was 3.81 in July, suggesting  Microcystis  
would grow. The fi eld data in August showed a 
 Microcystis  biomass increase from 4.04×10 7  to 
6.82×10 7 . 

 4 DISCUSSION 

 Niche breadth of species is a summation of all the 
resources utilized by that species (Van Valen, 1965) 
and is sometimes referred to as the migration “length” 

 Fig.3 RDA analysis of phytoplankton species and 
environmental variables in Chaohu Lake 

 Mic.: Microcystis; Aph.: Aphanizomenon; Ana.: Anabaena fl os-aquae; Pal.: 
Palmellococcus sp.; Sce.: Scenedesmus quadricauda; Cyc.: Cyclotella; 
Mel.: Melosira granulata var. angustissima; Cer.: Ceratium hirundinella. 

 Fig.4 Algal development rate predicted by the niche model (a) and net increase in algal concentration in the lake (b) for 
various months 

 a.u. = arbitrary units .

 Table 4 Average niche overlap of different categories of 
phytoplankton in Chaohu Lake 

 Category of 
phytoplankton  July  August  September  October 

  Cyanophyta   -0.14±2.58  -2.38±4.19  -0.93±6.57  -1.97±2.65 

  Cryptophyta   1.23±1.49  -0.07±1.82  -1.38±2.53  1.44±1.40 

  Chlorophyta   -0.40±4.47  -0.93±5.49  -2.51±6.89  -0.52±2.87 

  Bacillariophyta   -3.82±4.73  -6.02±6.13  -5.39±9.63  -4.01±4.68 

  Pyrrophyta   3.60±0.00  0.78±0.00  1.35±0.00  4.38±0.00 
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along a certain directional line in niche space (Levins, 
1968). Species with a bigger niche breadth have a 
greater capacity to compete for resources than those 
with a smaller niche breadth (Pianka, 1976; Thompson 
et al., 1999). Such a species is usually called a 
cosmopolitan or generalist species. Another aspect of 
niche measurement is niche overlap, which determines 
whether two similar species can live together stably 
when there is some resource competition (Petraitis, 
1979). Therefore, niche overlap is defi ned as the 
utilization ability of a common and limited resource 
by two species (Colwell and Futuyma, 1971; Abrams, 
1980; Sylvain et al., 2000). In the matrix of niche overlap, 
the developing status of a species  i  can be shown by 

potential growth rate (ΔSO ij  = SOij
i

n

=
∑
1

 – SOij
i

m

=
∑
1

). 

A growth status of a species is indicated by a positive 
ΔSO ij  whilst a decline status corresponds to a negative 
ΔSO ij , and a neutral status is usually given as a null ΔSO ij . 

 Under suitable environmental conditions in July, 
the niche breadth and niche overlap of  Microcystis  
was bigger than that of other species, refl ecting that 
the  Microcystis  population was growing and its 
dominance within the community was potentially 
increasing. This predicted that a potentially more 
serious bloom would occur in late July or August. 
Subsequently, the niche breadth and niche overlap of 
 Microcystis  decreased in August, suggesting a decline. 
According to RDA analysis, the    Microcystis  bloom 
decline was closely related to WT, DO, and TDP. This 
result was consistent with our previous fi ndings 
(Wang et al., 2010c), where low concentrations of 
inorganic phosphorus in the culture medium could 
signifi cantly limit the fl uidity of the thylakoid 
membrane, and fi nally result in a marked decrease in 
photosynthetic activity and primary productivity.  

 Other previous research has also observed that 
photo-inhibition  and/or  photo-damage commonly 
occurs in serious bloom areas (Wang et al., 2011b). 
However,  Microcystis  can grow well under low light 
conditions (Zevenboom and Mur, 1984; Thomas and 
Walsby, 1985), suggesting that light is not a signifi cant 
limiting factor. Here transparency (SD) rather than 
light intensity was investigated as one of factors 
affecting bloom dynamics. The result that SD had an 
insignifi cant negative correlation with  Microcystis  
biomass corroborates the suggestion that light does not 
have a signifi cant effect on bloom growth. With no 
signifi cant difference among the temperatures in July, 
August and September (data not shown), the main 

factors leading to the rapid decline of the  Microcystis  
bloom from August to September could be attributed to 
decreasing DO and nutrient concentration.  

 The decline rate of the bloom in September, 
indicated by a ΔSO ij  was higher than that in August, 
suggesting that environmental stress became more 
intense in September. In October, it was not only the 
decline rate of  Microcystis  that increased but also the 
average decline rate of all phytoplankton decreased, 
as the temperature signifi cantly decreased. This result 
indicted that resource competition is not always the 
major factor leading to bloom decline; the sudden 
drop in temperature was the major factor in the rapid 
decline of the  Microcystis  bloom in autumn. 

 Our previous study found a decline in  Microcystis  
blooms occurred between July and August in Meiliang 
Bay of Lake Taihu, China (Wang et al., 2012). Certain 
decline processes and mechanisms were determined 
from this study. With the decline of the bloom in 
August, interspecifi c succession occurred but there 
were no signifi cant changes in niche breadth and 
niche overlap in the community. This confi rmed that 
resource competition was the main cause for bloom 
decline in August. However, a typical seasonal 
succession occurred among species and categories of 
bloom organisms with decreasing temperature, 
leading to a further decline in the  Microcystis  bloom. 

 A niche model was proposed based on community 
structure which could forecast species potential growth 
rate (ΔSO ij ) using measurements of niche breadth and 
niche overlap. Environmental factors were not 
considered as parameters in this niche model, 
effectively removing human error caused by the time 
difference between sample collection and data analysis 
and avoiding the effects of this time-lag on model 
construction. The  Microcystis  bloom was observed to 
decline in autumn (Wang et al., 2012). However, from 
fi eld data, the exact timing of this decline and the 
decline rate was unknown. The ability of the model to 
solve this problem was tested and was found to provide 
good predictions for  Microcystis  bloom decline, when 
net-increase in biomass in algal samples were compared 
with the predicted values of species potential growth 
rate (ΔSO ij ). Thus the population dynamics of 
cyanobacterial growth and decline and particularly 
bloom biomass may be predicted if the structural 
characteristics and distribution patterns of the 
phytoplankton community are available. Such 
forecasting could provide bloom early warning 
allowing suitable methods for controlling bloom-
formation to be activated immediately. 
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