133 research outputs found

    Analysis of two pheromone-responsive conjugative multiresistance plasmids carrying the novel mobile optrA locus from Enterococcus faecalis

    Get PDF
    Background: The acquired optrA gene, which encodes a ribosomal protection protein of the ABC-F family, can confer cross-resistance to linezolid and florfenicol, posing a serious therapeutic challenge to both human and veterinary medicine. Purpose: The objective of this study was to investigate the two Enterococcus faecalis (E. faecalis) plasmids for their fine structure, their transferability and the presence of mobile antimicrobial resistance loci. Methods: To elucidate their fine structure, the two plasmids were completely sequenced and the sequences analysed. Besides conjugation experiments, inverse PCR assays were conducted to see whether minicircles are produced from the mobile antimicrobial resistance loci. Results: Two pheromone-responsive conjugative optrA-carrying plasmids from E. faecalis, pE211 and pE508 were identified, which can transfer with frequencies of 2.6 ×10−2 and 3.7 ×10−2 (transconjugant per donor), respectively. In both plasmids, optrA was located on the novel mobile optrA locus with different sizes (12,834 bp in pE211 and 7,561 bp in pE508, respectively), flanked by two copies of IS1216 genes in the same orientation. Inverse PCR revealed that circular forms can be generated, consisting of optrA and one copy of IS1216, indicating they are all active. The 77,562 bp plasmid pE211 also carried Tn558 and a mobile bcrABDR locus, and the 84,468 bp plasmid pE508 also harbored the genes fexA, tet(L), tet(O/W/32/O) and a mobile aac(A)-aph(D) locus. Conclusion: The presence of mobile genetic elements in these plasmids renders them flexible and these elements will aid to the persistence and dissemination of these plasmids among enterococci and potentially also other gram-positive bacteria

    Novel Tet(L) Efflux Pump Variants Conferring Resistance to Tigecycline and Eravacycline in Staphylococcus Spp.

    Get PDF
    Tigecycline is regarded as one of the few important last-resort antibiotics to treat complicated skin and intra-abdominal infections. Members of the genus Staphylococcus are zoonotic pathogens and pose a serious threat to public health. Tigecycline resistance in this species appears to be a rare phenomenon, and the mechanisms underlying tigecycline resistance have not been fully elucidated. Here, we report two novel variants of the tet(L) gene in Staphylococcus spp. from swine in China, designed as tet(L)F58L and tet(L)A117V. The tet(L)F58L was located within a 18,720 bp chromosomal multidrug resistance gene cluster flanked by two copies of IS257 in Staphylococcus cohnii 11-B-312, while the tet(L)A117V was located on a 6,292 bp plasmid in S. haemolyticus 11-B-93, which could be transferred to S. aureus by electrotransformation. Cloning of each of the two tet(L) variants into S. aureus RN4220 showed 16- or 8-fold increases in the minimal inhibition concentrations (MICs), which can fully confer the resistance to tigecycline (MICs from 0.125 to 2 mg/liter) and eravacycline (MICs from 0.125 to 1 or 2 mg/liter), but no increase in the MICs of omadacycline, compared with the MICs of the recipient strain S. aureus RN4220. In the in vivo murine sepsis and in the murine pneumonia models, an increase in CFU of S. aureus 29213_pT93 carrying the tet(L)A117V was seen despite tigecycline treatment. This observation suggests that the tet(L)A117V and its associated gene product compromise the efficacy of tigecycline treatment in vivo and may lead to clinical treatment failure. Our finding, that novel Tet(L) efflux pump variants which confer tigecycline and eravacycline resistance have been identified in Staphylococcus spp., requires urgent attention. IMPORTANCE Tigecycline and eravacycline are both important last-resort broad spectrum antimicrobial agents. The presence of novel Tet(L) efflux pump variants conferring the resistance to tigecycline and eravacycline in Staphylococcus spp. and its potential transmission to S. aureus will compromise the efficacy of tigecycline and eravacycline treatment for S. aureus associated infection in vivo and may lead to clinical treatment failure

    Biomarker study of symptomatic intracranial atherosclerotic stenosis in patients with acute ischemic stroke

    Get PDF
    ObjectiveAcute ischemic stroke (AIS) is characterized by high rates of morbidity, disability, mortality, and recurrence, often leaving patients with varying degrees of sequelae. Symptomatic intracranial atherosclerotic stenosis (sICAS) is a significant contributor to AIS pathogenesis and recurrence. The formation and progression of sICAS are influenced by pathways such as lipid metabolism and inflammatory response. Given its high risk of clinical recurrence, timely assessment of intracranial vascular stenosis in AIS is crucial for diagnosing sICAS, treating stroke, and preventing stroke recurrence.MethodsFourteen AIS patients were divided into stenosis and control groups based on the presence or absence of intracranial vessel stenosis. Initially, 4D Label-free proteome quantification technology was employed for mass spectrometry analysis to identify differential proteins between the groups. Subsequently, functional enrichment analysis, including GO classification, KEGG pathway, and Domain, revealed trends related to differential proteins. The STRING (v.11.5) protein interaction network database was used to identify differential protein interactions and target proteins. Finally, parallel reaction monitoring (PRM) validated the selected target proteins.ResultsMass spectrometry identified 1,096 proteins, with 991 being quantitatively comparable. Using a p-value <0.05 and differential expression change thresholds of >1.3 for significant up-regulation and < 1/1.3 for significant down-regulation, 46 differential proteins were identified: 24 significantly up-regulated and 22 significantly down-regulated. PRM experiments validated five proteins related to lipid metabolism and inflammatory response: namely alpha-2-macroglobulin (A2M), lipopolysaccharide-binding protein (LBP), cathepsin G (CTSG), cystatin (CST)3, and fatty acid-binding protein (FABP)1.ConclusionThe detection of changes in these five proteins in AIS patients can aid in the diagnosis of sICAS, inform stroke treatment, and assist in preventing stroke recurrence. Moreover, it can contribute to the development of drugs for preventing AIS recurrence by integrating traditional Chinese and Western medicine

    The reservoir of latent HIV

    Get PDF
    The persistence of latent reservoir of the human immunodeficiency virus (HIV) is currently the major challenge in curing HIV infection. After HIV infects the human body, the latent HIV is unable to be recognized by the body’s immune system. Currently, the widely adopted antiretroviral therapy (ART) is also unble to eliminate it, thus hindering the progress of HIV treatment. This review discusses the existence of latent HIV vault for HIV treatment, its formation and factors affecting its formation, cell, and tissue localization, methods for detection and removing latent reservoir, to provide a comprehensive understanding of latent HIV vault, in order to assist in the future research and play a potential role in achieving HIV treatment

    Keratin 18 phosphorylation as a progression marker of chronic hepatitis B

    Get PDF
    BACKGROUND: The intermediate filament proteins keratins 18 (K18) and 8 (K8) polymerize to form the cytoskeletal network in the mature hepatocytes. It has been shown that the phosphorylation of K18 at two serine residues, 33 and 52, correlates with the progression of hepatitis C, but little is known of chronic hepatitis B (CHB). In this study, we examined K18 phosphorylation in relation to CHB. RESULTS: Site-specific phosphorylation of K18 was determined in livers of twelve healthy donors, and non-cirrhosis (n = 40) and cirrhosis (n = 21) patients. On average, progressively higher level of Ser52 phosphorylation was observed in non-cirrhotic and cirrhotic livers, while elevated Ser33 phosphorylation was detected in both livers but no significant difference. Progressive increase of Ser33 and Ser52 phosphorylation correlated with the elevation of both histological lesions and enzymatic activities of alanine aminotransferase in non-cirrhotic livers. In the hepatocytes of an inactive HBV carrier, strong signals of Ser33 phosphorylation were co-localized with viral infection, while only basal level of Ser52 phosphorylation was detected in infected cells. CONCLUSION: Assuming all obtained data, our data suggest that K18 phosphorylation is a progression marker for CHB

    Activation of Pregnane X Receptor by Pregnenolone 16 α-carbonitrile Prevents High-Fat Diet-Induced Obesity in AKR/J Mice

    Get PDF
    Pregnane X receptor (PXR) is known to function as a xenobiotic sensor to regulate xenobiotic metabolism through selective transcription of genes responsible for maintaining physiological homeostasis. Here we report that the activation of PXR by pregnenolone 16α-carbonitrile (PCN) in AKR/J mice can prevent the development of high-fat diet-induced obesity and insulin resistance. The beneficial effects of PCN treatment are seen with reduced lipogenesis and gluconeogenesis in the liver, and lack of hepatic accumulation of lipid and lipid storage in the adipose tissues. RT-PCR analysis of genes involved in gluconeogenesis, lipid metabolism and energy homeostasis reveal that PCN treatment on high-fat diet-fed mice reduces expression in the liver of G6Pase, Pepck, Cyp7a1, Cd36, L-Fabp, Srebp, and Fas genes and slightly enhances expression of Cyp27a1 and Abca1 genes. RT-PCR analysis of genes involved in adipocyte differentiation and lipid metabolism in white adipose tissue show that PCN treatment reduces expression of PparÎł2, Acc1, Cd36, but increases expression of Cpt1b and Pparα genes in mice fed with high-fat diet. Similarly, PCN treatment of animals on high-fat diet increases expression in brown adipose tissue of Pparα, Hsl, Cpt1b, and Cd36 genes, but reduces expression of Acc1 and Scd-1 genes. PXR activation by PCN in high-fat diet fed mice also increases expression of genes involved in thermogenesis in brown adipose tissue including Dio2, Pgc-1α, Pgc-1ÎČ, Cidea, and Ucp-3. These results verify the important function of PXR in lipid and energy metabolism and suggest that PXR represents a novel therapeutic target for prevention and treatment of obesity and insulin resistance
    • 

    corecore