298 research outputs found

    Asymptotic Stability and Exponential Stability of Impulsive Delayed Hopfield Neural Networks

    Get PDF
    A criterion for the uniform asymptotic stability of the equilibrium point of impulsive delayed Hopfield neural networks is presented by using Lyapunov functions and linear matrix inequality approach. The criterion is a less restrictive version of a recent result. By means of constructing the extended impulsive Halanay inequality, we also analyze the exponential stability of impulsive delayed Hopfield neural networks. Some new sufficient conditions ensuring exponential stability of the equilibrium point of impulsive delayed Hopfield neural networks are obtained. An example showing the effectiveness of the present criterion is given

    Theoretical and Experimental Adsorption Studies of Polyelectrolytes on an Oppositely Charged Surface

    Full text link
    Using self-assembly techniques, x-ray reflectivity measurements, and computer simulations, we study the effective interaction between charged polymer rods and surfaces. Long-time Brownian dynamics simulations are used to measure the effective adhesion force acting on the rods in a model consisting of a planar array of uniformly positively charged, stiff rods and a negatively charged planar substrate in the presence of explicit monovalent counterions and added monovalent salt ions in a continuous, isotropic dielectric medium. This electrostatic model predicts an attractive polymer-surface adhesion force that is weakly dependent on the bulk salt concentration and that shows fair agreement with a Debye-Huckel approximation for the macroion interaction at salt concentrations near 0.1 M. Complementary x-ray reflectivity experiments on poly(diallyldimethyl ammonium) chloride (PDDA) monolayer films on the native oxide of silicon show that monolayer structure, electron density, and surface roughness are likewise independent of the bulk ionic strength of the solution.Comment: Revtex, prb format; uses amssym

    Nonlinear vibration of hypoid gear with backlash

    Get PDF
    Due to the machining errors, alignment error, wear, tear and time varying stiffness of hypoid teeth, the vibration of hypoid gears is inevitably produced in the course of working, and its vibration and noise is the main sources of vibration and noise in the automobile transmission. Study on nonlinear vibration and noise of the hypoid gear pair, and investigating on reducing its vibration and noise are of great significance. Firstly, a simplified nonlinear vibration model of the hypoid gears of main reducer, with considering the time-varying teeth stiffness and teeth surface friction damping, was established. Then, a numerical simulation method was employed to simulate different gear backlash effects on the hypoid gear vibration behaviors caused by the gear worn, and effects on the gear non-linear vibration from different work speeds of gear and different loading torques were investigated. In order to help to explain the non-linear vibration phenomenon of the hypoid gears, the 2-D phase plane diagram and the 3-D trajectory were employed. Lastly, the bench test was carried out to verify the simulation results on vibration of hypoid gears with backlash

    Combining Social Cognitive Theories with Linguistic Features for Multi-genre Sentiment Analysis

    Get PDF

    Thermomechanical fatigue life prediction for a marine diesel engine piston considering ring dynamics

    Get PDF
    A newly designed marine diesel engine piston was modeled using a precise finite element analysis (FEA). The high cycle fatigue (HCF) safety factor prediction procedure designed in this study incorporated lubrication, thermal, and structure analysis. The piston ring dynamics calculation determined the predicted thickness of lubrication oil film. The film thickness influenced the calculated magnitude of the heat transfer coefficient (HTC) used in the thermal loads analysis. Moreover, the gas pressure of ring lands and ring grooves used in mechanical analysis is predicted based on the piston ring dynamics model

    Janus Monolayer Transition Metal Dichalcogenides

    Full text link
    A novel crystal configuration of sandwiched S-Mo-Se structure (Janus SMoSe) at the monolayer limit has been synthesized and carefully characterized in this work. By controlled sulfurization of monolayer MoSe2 the top layer of selenium atoms are substituted by sulfur atoms while the bottom selenium layer remains intact. The peculiar structure of this new material is systematically investigated by Raman, photoluminescence and X-ray photoelectron spectroscopy and confirmed by transmission-electron microscopy and time-of-flight secondary ion mass spectrometry. Density-functional theory calculations are performed to better understand the Raman vibration modes and electronic structures of the Janus SMoSe monolayer, which are found to correlate well with corresponding experimental results. Finally, high basal plane hydrogen evolution reaction (HER) activity is discovered for the Janus monolayer and DFT calculation implies that the activity originates from the synergistic effect of the intrinsic defects and structural strain inherent in the Janus structure.Comment: 22 pages, 12 figure

    Experimental investigation of the flame retardant and form-stable composite phase change materials for a power battery thermal management system

    Get PDF
    © 2020 Elsevier Ltd. All rights reserved. This manuscript is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence http://creativecommons.org/licenses/by-nc-nd/4.0/.An efficient battery thermal management system (BTMS) will undoubtedlypromote the performance and lifespan of battery packs. In this study, a novelflame-retarded composite PCMs composed by paraffin (PA), expanded graphite (EG), ammonium polyphosphate (APP), red phosphorus (RP) and epoxy resin (ER) has been proposed for battery module. The thermophysical and flame retardant properties are investigated at both macro and micro levels. The results show that the proposed composite PCMs with an APP/RP ratio of 23/10 exhibit the optimum flame retardant performance. Besides, the APP/RP-based composite PCMs for 18650 ternary battery module has also been researched comparing with air cooled and PCM with pure PA modes. The experimental results indicated that the fire retardant PCMs shown significant cooling and temperature balancing advantages for battery module, leading to a 44.7% and 30.1% reduction rate of the peak temperature and the maintenance of the maximum temperature difference within 1.36°C at a 3 C discharge rate for 25°C. Even at 45°C, the temperature uniformity can still be controlled within 5°C. Thus, this research indicates the composite PCM had good flame retardant and form stable properties, it would be utilized in BTMS, energy storage and other fields.Peer reviewe
    • …
    corecore