238 research outputs found

    Theoretical and Experimental Adsorption Studies of Polyelectrolytes on an Oppositely Charged Surface

    Full text link
    Using self-assembly techniques, x-ray reflectivity measurements, and computer simulations, we study the effective interaction between charged polymer rods and surfaces. Long-time Brownian dynamics simulations are used to measure the effective adhesion force acting on the rods in a model consisting of a planar array of uniformly positively charged, stiff rods and a negatively charged planar substrate in the presence of explicit monovalent counterions and added monovalent salt ions in a continuous, isotropic dielectric medium. This electrostatic model predicts an attractive polymer-surface adhesion force that is weakly dependent on the bulk salt concentration and that shows fair agreement with a Debye-Huckel approximation for the macroion interaction at salt concentrations near 0.1 M. Complementary x-ray reflectivity experiments on poly(diallyldimethyl ammonium) chloride (PDDA) monolayer films on the native oxide of silicon show that monolayer structure, electron density, and surface roughness are likewise independent of the bulk ionic strength of the solution.Comment: Revtex, prb format; uses amssym

    Nonlinear vibration of hypoid gear with backlash

    Get PDF
    Due to the machining errors, alignment error, wear, tear and time varying stiffness of hypoid teeth, the vibration of hypoid gears is inevitably produced in the course of working, and its vibration and noise is the main sources of vibration and noise in the automobile transmission. Study on nonlinear vibration and noise of the hypoid gear pair, and investigating on reducing its vibration and noise are of great significance. Firstly, a simplified nonlinear vibration model of the hypoid gears of main reducer, with considering the time-varying teeth stiffness and teeth surface friction damping, was established. Then, a numerical simulation method was employed to simulate different gear backlash effects on the hypoid gear vibration behaviors caused by the gear worn, and effects on the gear non-linear vibration from different work speeds of gear and different loading torques were investigated. In order to help to explain the non-linear vibration phenomenon of the hypoid gears, the 2-D phase plane diagram and the 3-D trajectory were employed. Lastly, the bench test was carried out to verify the simulation results on vibration of hypoid gears with backlash

    Thermomechanical fatigue life prediction for a marine diesel engine piston considering ring dynamics

    Get PDF
    A newly designed marine diesel engine piston was modeled using a precise finite element analysis (FEA). The high cycle fatigue (HCF) safety factor prediction procedure designed in this study incorporated lubrication, thermal, and structure analysis. The piston ring dynamics calculation determined the predicted thickness of lubrication oil film. The film thickness influenced the calculated magnitude of the heat transfer coefficient (HTC) used in the thermal loads analysis. Moreover, the gas pressure of ring lands and ring grooves used in mechanical analysis is predicted based on the piston ring dynamics model

    Experimental investigation of the flame retardant and form-stable composite phase change materials for a power battery thermal management system

    Get PDF
    © 2020 Elsevier Ltd. All rights reserved. This manuscript is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence http://creativecommons.org/licenses/by-nc-nd/4.0/.An efficient battery thermal management system (BTMS) will undoubtedlypromote the performance and lifespan of battery packs. In this study, a novelflame-retarded composite PCMs composed by paraffin (PA), expanded graphite (EG), ammonium polyphosphate (APP), red phosphorus (RP) and epoxy resin (ER) has been proposed for battery module. The thermophysical and flame retardant properties are investigated at both macro and micro levels. The results show that the proposed composite PCMs with an APP/RP ratio of 23/10 exhibit the optimum flame retardant performance. Besides, the APP/RP-based composite PCMs for 18650 ternary battery module has also been researched comparing with air cooled and PCM with pure PA modes. The experimental results indicated that the fire retardant PCMs shown significant cooling and temperature balancing advantages for battery module, leading to a 44.7% and 30.1% reduction rate of the peak temperature and the maintenance of the maximum temperature difference within 1.36°C at a 3 C discharge rate for 25°C. Even at 45°C, the temperature uniformity can still be controlled within 5°C. Thus, this research indicates the composite PCM had good flame retardant and form stable properties, it would be utilized in BTMS, energy storage and other fields.Peer reviewe

    Structural Optimization and Thermal Management with PCM-Honeycomb Combination for Photovoltaic-Battery Integrated System

    Get PDF
    © 2022 Xinxi Li et al. This is an open access article distributed under the Creative Commons Attribution License, https://creativecommons.org/licenses/by/4.0/Power lithium–ion batteries retired from the electric vehicles (EVs) are confronting many problems such as environment pollution and energy dissipation. Traditional photovoltaic (PV) battery systems are exhibiting many issues such as being bulky and expensive, high working temperature, and short service span. In order to address these problems, in this study, a novel PV–battery device integrating PV controllers and battery module into an independent device is proposed. Phase change material (PCM) as the energy storage material has been utilized in battery module, and the aluminum honeycomb is combined with PCM to improve the heat conductivity under natural convection conditions. Three types of PV battery systems including the general PV–battery integrated system (G–PBIS), honeycomb PV–battery integrated system (H–PBIS), and honeycomb–paraffin PV–battery integrated system (HP–PBIS) have been investigated in detail. The results reveal that the maximum temperature of the HP–PBIS coupling with the double–layer 10×165×75 mm3 PCM was reduced to 53.72°C, exhibiting an optimum cooling effect among various PV battery systems. Thus, it can be concluded that the aluminum honeycomb provides the structural reliability and good thermal conductivity, and the PCM surrounding battery module can control the temperature rising and balance the temperature uniformly. Besides, the optimum PV–battery integrated system performs a promising future in energy storage fields.Peer reviewedFinal Published versio
    • …
    corecore