46 research outputs found
Upregulation Of Microglial Zeb1 Ameliorates Brain Damage After Acute Ischemic Stroke
Microglia are a key immune-competent cell type that respond to environmental and physiological changes during ischemic stroke. However, the molecular mechanisms controlling post-ischemic microglia activity are unclear. Understanding these mechanisms may ultimately reduce disease burden and allow the manipulation of microglia responses to shape the outcomes of stroke. Here, we report that, after experimentally induced stroke, ZEB1 is highly expressed in ipsilateral cerebral hemisphere, where it is upregulated mainly in microglia. Using a conditional transgenic mouse, we found that ZEB1 upregulation in microglia regulates immune responses in the CNS and alleviates brain injury after ischemic stroke. Our data indicate that ZEB1 overexpression mediates microglia responses and, in turn, inhibits the production of astrocytic CXCL1 through the TGF-β1-dependent pathway. Reduced CXCL1 leads to a decline in neutrophil infiltration into the brain, thereby reducing CNS inflammation. Our results demonstrate the importance of ZEB1 in microglia-orchestrated neuroinflammation and suggest a potential means for reducing stroke-induced neurological injury. Li et al. show that ZEB1 overexpression mediates microglia responses and, in turn, inhibits production of astrocytic CXCL1 through the TGF-β1-dependent pathway. Reduced CXCL1 leads to the decline of neutrophil infiltration into the brain. This demonstrates the importance of ZEB1 in microglia-orchestrated neuroinflammation and suggests a potential means for reducing stroke-induced neurological injury
Induction of Resistance Mediated by an Attenuated Strain of Valsa mali
To study the induced resistance in apple against Valsa mali var. mali (Vmm), a Vmm–apple callus interaction system was developed to evaluate the induced resistance of an attenuated Vmm strain LXS081501 against further infection by a virulent Vmm strain LXS080601. The infection index was up to 97.32 for apple calli inoculated with LXS080601 alone at 15 days after inoculation whereas it was only 41.84 for calli pretreated with LXS081501 followed by LXS080601 inoculation. In addition, the maximum levels of free proline, soluble sugar, and protein in calli treated with LXS081501 plus LXS080601 were 2.14 to 3.47 times higher than controls and 1.42 to 1.75 times higher than LXS080601 treatment. The activities of defense-related enzymes such as phenylalanine ammonia lyase (PAL), polyphenol oxidase (PPO), peroxidase (POD), and catalase (CAT) as well as β-1,3-glucanase and chitinase in apple calli inoculated with LXS080601 alone or LXS081501 plus LXS080601 increased significantly 24 hai and peaked from 48 to 120 hpi. However, in the latter treatment, the maximum enzyme activities were much higher and the activities always maintained much higher levels than control during the experimental period. These results suggested the roles of osmotic adjustment substances and defense-related enzymes in induced resistance
RETRACTED: A study on expression level and nutritional status of IGFBP-2 after left neck anastomosis combined with placement of feeding nutritional applicators carrying ^(125)I particles in the treatment of esophageal cancer
BackgroundTo explore the changes and significance of the expression level and nutritional status of human insulin-like growth factor binding protein-2 (IGFBP2) after the treatment of esophageal cancer with left neck anastomosis combined with placement of feeding nutritional applicators carrying ^(125)I particles.MethodsA total of 110 patients with esophageal cancer (observation group: left neck anastomosis combined with placement of feeding nutritional applicators carrying ^(125)I particles) and 100 healthy people (control group) were enrolled at the same period. Then enzyme-linked immunosorbent assay (ELISA) was carried out to detect level of IGFBP-2. Lymphocyte count and serum albumin were measured by immune analyzer and automatic protein analyzer to evaluate nutritional status. Logistic regression analysis was used to analyze the relationship between serum IGFBP-2, nutritional status and prognosis of esophageal cancer after combined treatment.ResultsThe albumin, lymphocyte absolute value and PNI detection value of the control group were lower than those of the observation group 1 month after treatment, and the difference was statistically significant compared with the control group. The detection value of IGFBP-2 in early patients before and after treatment was lower than that in middle and late patients, and the detection values of albumin, lymphocyte absolute value and PNI were higher than those in middle and late patients, the differences were statistically significant. Serum IGFBP-2 level was negatively correlated with PNI, and albumin and lymphocyte absolute value were positively correlated with PNI. The detection value of IGFBP-2 in patients with good prognosis was significantly lower than that in patients with poor prognosis, and the detection values of albumin, lymphocyte absolute value and PNI were significantly higher than those in patients with poor prognosis. The AUC (0.887,95% CI: 0.799-0.975) of IGFBP-2, albumin, lymphocyte absolute value and PNI in predicting poor prognosis of esophageal cancer was the largest, and the sensitivity and specificity were 94.12% and 92.47%, respectively.ConclusionsLeft neck anastomosis combined with ^(125)I particle application nutritional tube is helpful for the decrease of serum IGFBP-2 and the increase of various nutritional status indicators, which is beneficial for the improvement of the patient’s condition
Complete Genome Sequence of Industrial Biocontrol Strain Paenibacillus polymyxa HY96-2 and Further Analysis of Its Biocontrol Mechanism
Paenibacillus polymyxa (formerly known as Bacillus polymyxa) has been extensively studied for agricultural applications as a plant-growth-promoting rhizobacterium and is also an important biocontrol agent. Our team has developed the P. polymyxa strain HY96-2 from the tomato rhizosphere as the first microbial biopesticide based on P. polymyxa for controlling plant diseases around the world, leading to the commercialization of this microbial biopesticide in China. However, further research is essential for understanding its precise biocontrol mechanisms. In this paper, we report the complete genome sequence of HY96-2 and the results of a comparative genomic analysis between different P. polymyxa strains. The complete genome size of HY96-2 was found to be 5.75 Mb and 5207 coding sequences were predicted. HY96-2 was compared with seven other P. polymyxa strains for which complete genome sequences have been published, using phylogenetic tree, pan-genome, and nucleic acid co-linearity analysis. In addition, the genes and gene clusters involved in biofilm formation, antibiotic synthesis, and systemic resistance inducer production were compared between strain HY96-2 and two other strains, namely, SC2 and E681. The results revealed that all three of the P. polymyxa strains have the ability to control plant diseases via the mechanisms of colonization (biofilm formation), antagonism (antibiotic production), and induced resistance (systemic resistance inducer production). However, the variation of the corresponding genes or gene clusters between the three strains may lead to different antimicrobial spectra and biocontrol efficacies. Two possible pathways of biofilm formation in P. polymyxa were reported for the first time after searching the KEGG database. This study provides a scientific basis for the further optimization of the field applications and quality standards of industrial microbial biopesticides based on HY96-2. It may also serve as a reference for studying the differences in antimicrobial spectra and biocontrol capability between different biocontrol agents
Proteomic Profiling of Mesenchymal Stem Cell Responses to Mechanical Strain and TGF-β1
Mesenchymal stem cells (MSCs) are a potential source of smooth muscle cells (SMCs) for constructing tissue-engineered vascular grafts. However, the details of how specific combinations of vascular microenvironmental factors regulate MSCs are not well understood. Previous studies have suggested that both mechanical stimulation with uniaxial cyclic strain and chemical stimulation with transforming growth factor-β1 (TGF-β1) can induce smooth muscle markers in MSCs. In this study, we investigated the combined effects of uniaxial cyclic strain and TGF-β1 stimulation on MSCs. By using a proteomic analysis, we found differential regulation of several proteins and genes, such as the up-regulation of TGF-β1-induced protein ig-h3 (BGH3) protein levels by TGF-β1 and up-regulation of calponin 3 protein level by cyclic strain. At the gene expression level, BGH3 was induced by TGF-β1, but calponin 3 was not significantly regulated by mechanical strain or TGF-β1, which was in contrast to the synergistic up-regulation of calponin 1 gene expression by cyclic strain and TGF-β1. Further experiments with cycloheximide treatment suggested that the up-regulation of calponin 3 by cyclic strain was at post-transcriptional level. The results in this study suggest that both mechanical stimulation and TGF-β1 signaling play unique and important roles in the regulation of MSCs at both transcriptional and post-transcriptional levels, and that a precise combination of microenvironmental cues may promote MSC differentiation
Motion Compensation and 3-D Imaging Algorithm in Sparse Flight Based Airborne Array SAR
In this study, we adopt a criterion of Barker code to generate a high-resolution image from sparse flight samples to establish a three-dimensional (3-D) imaging model of airborne array SAR. Under the condition of motion error, we utilize the Modified Uniformly Redundant Arrays (MURA) modulation and 3-D Back
Projection (BP) algorithm to obtain 3-D complex image pairs under each flight. Based on interferometry and Compressed Sensing (CS) in frequency domain, the array deformation error compensation is realized. The phases of 3-D complex image formed by the echo corresponding to negative MURA modulation are referred to perform phase compensation on each single-pass complex image to restore the image phase relation of each flight. Coherent accumulation of each complex image is implemented to realize high-resolution 3-D imaging under sparse flight sampling. Simulation analysis and experimental data verify the feasibility of the proposed method
Optical System and Detection Range Analysis of Synthetic Aperture Ladar
Optical system and detection range of Synthetic Aperture Ladar (SAL) are analyzed. According to the imaging characteristics of SAL, the concept that SAL uses non-imaging diffractive optical system are proposed, meanwhile, the phased array model is introduced to analyze its performance. In the condition of using binary optical element on the feeder and primary mirror, the phaser parameters and beam pattern are presented using simulation. The signal of 2° view field is introduced into fiber with the 300 mm aperture telescope and compressed optical path. The radar detection range equation of SAL is introduced, coherent detection and signal accumulation gain are analyzed, the conclusion is SAL has good ability of detecting weak signal. Aiming at application requirement, system parameters and working modes of airborne SAL are given with high resolution and long detection range. With 5 cm resolution, the airborne SAL can achieve 5 km detection range with 1.5 km swath in strip-map imaging mode and 10 km detection range with 1 km swath in sliding spotlight imaging mode