7,276 research outputs found

    GRB/GW association: Long-short GRB candidates, time-lag, measuring gravitational wave velocity and testing Einstein's equivalence principle

    Full text link
    Short-duration gamma-ray bursts (SGRBs) are widely believed to be powered by the mergers of compact binaries, such as binary neutron stars or possibly neutron star-black hole binaries. Though the prospect of detecting SGRBs with gravitational wave (GW) signals by the advanced Laser Interferometer Gravitational-Wave Observatory (LIGO)/VIRGO network is promising, no known SGRB has been found within the expected advanced LIGO/VIRGO sensitivity range for binary neutron star systems. We find, however, that the two long-short GRBs (GRB 060505 and GRB 060614) may be within the horizon of advanced GW detectors. In the upcoming era of GW astronomy, the merger origin of some long-short GRBs, as favored by the macronova signature displayed in GRB 060614, can be unambiguously tested. The model-dependent time lags between the merger and the onset of the prompt emission of the GRB are estimated. The comparison of such time lags between model predictions and the real data expected in the era of the GW astronomy would be helpful in revealing the physical processes taking place at the central engine (including the launch of the relativistic outflow, the emergence of the outflow from the dense material ejected during the merger, and the radiation of gamma rays). We also show that the speed of GWs, with or without a simultaneous test of Einstein's equivalence principle, can be directly measured to an accuracy of ∼3×10−8 cm s−1\sim 3\times 10^{-8}~{\rm cm~s^{-1}} or even better in the advanced LIGO/VIRGO era. The Astrophysical Journal, VolumeComment: 12 pages, 3 figures, published in The Astrophysical Journa

    The lightcurve of the macronova associated with the long-short burst GRB 060614

    Get PDF
    The {\it Swift}-detected GRB 060614 was a unique burst that straddles an imaginary divide between long- and short-duration gamma-ray bursts (GRBs), and its physical origin has been heavily debated over the years. Recently, a distinct very-soft F814W-band excess at t∼13.6t\sim 13.6 days after the burst was identified in a joint-analysis of VLT and HST optical afterglow data of GRB~060614, which has been interpreted as evidence for an accompanying Li-Paczynski macronova (also called a kilonova). Under the assumption that the afterglow data in the time interval of 1.7−3.01.7-3.0 days after the burst are due to external forward shock emission, when this assumption is extrapolated to later times it is found that there is an excess of flux in several multi-band photometric observations. This component emerges at ∼\sim4 days after the burst, and it may represent the first time that a multi-epoch/band lightcurve of a macronova has been obtained. The macronova associated with GRB 060614 peaked at t≲4t\lesssim 4 days after the burst, which is significantly earlier than that observed for a supernova associated with a long-duration GRB. Due to the limited data, no strong evidence for a temperature evolution is found. We derive a conservative estimate of the macronova rate of ∼16.3−8.2+16.3 Gpc−3yr−1\sim 16.3^{+16.3}_{-8.2}~{\rm Gpc^{-3}}{\rm yr^{-1}}, implying a promising prospect for detecting the gravitational wave radiation from compact object mergers by upcoming Advanced LIGO/VIRGO/KAGRA detectors (i.e., the rate is RGW∼0.5−0.25+0.5(D/200 Mpc)3 yr−1{\cal R}_{\rm GW} \sim 0.5^{+0.5}_{-0.25}(D/200~{\rm Mpc})^{3}~{\rm yr^{-1}}).Comment: The version published in ApJL. Fig.1 has been updated, main conclusions are unchange
    • …
    corecore