37 research outputs found

    Research on Method of Dynamic Stability Analysis for Slopes of Earth and Rockfill Dam Basing on the P-Z Model

    Get PDF
    According to the problems in dynamic stability analysis for slopes of earth and rockfill dam, the P-Z constitutive model, which is a kind of the multi-mechanism plastic model based on generalized plasticity, is introduced in the paper. Strength reduction factors of P-Z model are derived and verified, and based on them a new kind of method of dam slopes dynamic stability is put forward. For the method, the dynamic stability of dam slopes is judged by dynamic displacement time history and post-earthquake permanent displacement. The results show that local instability of dam slopes and variation features of dynamic response are obtained by the method, which is more reasonable

    Assessment Model of Ecoenvironmental Vulnerability Based on Improved Entropy Weight Method

    Get PDF
    Assessment of ecoenvironmental vulnerability plays an important role in the guidance of regional planning, the construction and protection of ecological environment, which requires comprehensive consideration on regional resources, environment, ecology, society and other factors. Based on the driving mechanism and evolution characteristics of ecoenvironmental vulnerability in cold and arid regions of China, a novel evaluation index system on ecoenvironmental vulnerability is proposed in this paper. For the disadvantages of conventional entropy weight method, an improved entropy weight assessment model on ecoenvironmental vulnerability is developed and applied to evaluate the ecoenvironmental vulnerability in western Jilin Province of China. The assessing results indicate that the model is suitable for ecoenvironmental vulnerability assessment, and it shows more reasonable evaluation criterion, more distinct insights and satisfactory results combined with the practical conditions. The model can provide a new method for regional ecoenvironmental vulnerability evaluation

    A model worker: Multifaceted modulation of AUXIN RESPONSE FACTOR3 orchestrates plant reproductive phases

    Get PDF
    The key phytohormone auxin is involved in practically every aspect of plant growth and development. Auxin regulates these processes by controlling gene expression through functionally distinct AUXIN RESPONSE FACTORs (ARFs). As a noncanonical ARF, ARF3/ETTIN (ETT) mediates auxin responses to orchestrate multiple developmental processes during the reproductive phase. The arf3 mutation has pleiotropic effects on reproductive development, causing abnormalities in meristem homeostasis, floral determinacy, phyllotaxy, floral organ patterning, gynoecium morphogenesis, ovule development, and self-incompatibility. The importance of ARF3 is also reflected in its precise regulation at the transcriptional, posttranscriptional, translational, and epigenetic levels. Recent studies have shown that ARF3 controls dynamic shoot apical meristem (SAM) maintenance in a non-cell autonomous manner. Here, we summarize the hierarchical regulatory mechanisms by which ARF3 is regulated and the diverse roles of ARF3 regulating developmental processes during the reproductive phase

    Long-term nitrogen fertilizer management for enhancing use efficiency and sustainable cotton (Gossypium hirsutum L.)

    Get PDF
    Optimal management of nitrogen fertilizer profoundly impacts sustainable development by influencing nitrogen use efficiency (NUE) and seed cotton yield. However, the effect of long-term gradient nitrogen application on the sandy loam soil is unclear. Therefore, we conducted an 8-year field study (2014–2021) using six nitrogen levels: 0 kg/hm2 (N0), 75 kg/hm2 (N1), 150 kg/hm2 (N2), 225 kg/hm2 (N3), 300 kg/hm2 (N4), and 375 kg/hm2 (N5). The experiment showed that 1) Although nitrogen application had insignificantly affected basic soil fertility, the soil total nitrogen (STN) content had decreased by 5.71%–19.67%, 6.67%–16.98%, and 13.64%–21.74% at 0-cm–20-cm, 20-cm–40-cm, and 40-cm–60-cm soil layers, respectively. 2) The reproductive organs of N3 plants showed the highest nitrogen accumulation and dry matter accumulation in both years. Increasing the nitrogen application rate gradually decreased the dry matter allocation ratio to the reproductive organs. 3) The boll number per unit area of N3 was the largest among all treatments in both years. On sandy loam, the most optional nitrogen rate was 190 kg/hm2–270 kg/hm2 for high seed cotton yield with minimal nitrogen loss and reduced soil environment pollution

    Superconductivity in a new layered cobalt oxychalcogenide Na6_{6}Co3_{3}Se6_{6}O3_{3} with a 3d5d^{5} triangular lattice

    Full text link
    Unconventional superconductivity in bulk materials under ambient pressure is extremely rare among the 3dd transition-metal compounds outside the layered cuprates and iron-based family. It is predominantly linked to highly anisotropic electronic properties and quasi-two-dimensional (2D) Fermi surfaces. To date, the only known example of the Co-based exotic superconductor was the hydrated layered cobaltate, Nax_{x}CoO2_{2}\cdot yH2_{2}O, and its superconductivity is realized in the vicinity of a spin-1/2 Mott state. However, the nature of the superconductivity in these materials is still an active subject of debate, and therefore, finding new class of superconductors will help unravel the mysteries of their unconventional superconductivity. Here we report the discovery of unconventional superconductivity at \sim 6.3 K in our newly synthesized layered compound Na6_{6}Co3_{3}Se6_{6}O3_{3}, in which the edge-shared CoSe6_{6} octahedra form [CoSe2_{2}] layers with a perfect triangular lattice of Co ions. It is the first 3dd transition-metal oxychalcogenide superconductor with distinct structural and chemical characteristics. Despite its relatively low TcT_{c}, material exhibits extremely high superconducting upper critical fields, μ0Hc2(0)\mu_{0}H_{c2}(0), which far exceeds the Pauli paramagnetic limit by a factor of 3 - 4. First-principles calculations show that Na6_{6}Co3_{3}Se6_{6}O3_{3} is a rare example of negative charge transfer superconductor. This new cobalt oxychalcogenide with a geometrical frustration among Co spins, shows great potential as a highly appealing candidate for the realization of high-TcT_{c} and/or unconventional superconductivity beyond the well-established Cu- and Fe-based superconductor families, and opened a new field in physics and chemistry of low-dimensional superconductors

    A Review on Process-Based Groundwater Vulnerability Assessment Methods

    No full text
    The unreasonable development and pollution of groundwater have caused damage to the groundwater system and environmental problems. To prevent this, the concept of “groundwater vulnerability” was proposed, and various evaluation methods were developed for groundwater protection. However, with changing climatic conditions and human activities, groundwater vulnerability is now emphasizing physical processes. This study aims to review and analyze the principles and applications of process-based groundwater vulnerability methods to achieve the source protection of groundwater resources. It introduces the assessment method and elaborates on pollutant migration processes and numerical simulation technology. Relevant articles from the past 30 years are reviewed to show the evolution of process-based groundwater vulnerability assessment. The study also discusses current research trends and proposes future development paths. It concludes that process-based groundwater vulnerability assessment will become the mainstream method, and modern technologies such as artificial intelligence will be necessary to solve challenges and achieve sustainable development

    Bamboo Chopstick Biochar Electrodes and Enhanced Nitrate Removal from Groundwater

    No full text
    The nitrate pollution of groundwater can cause serious harm to human health. Biochar electrodes, combined with adsorption and electroreduction, have great potential in nitrate removal from groundwater. In this study, bamboo chopsticks were used as feedstocks for biochar preparation. The bamboo chopstick biochar (BCBC), prepared by pyrolysis at 600 °C for 2 h, had a specific surface area of 179.2 m2/g and an electrical conductivity of 8869.2 μS/cm, which was an ideal biochar electrode material. The maximum nitrate adsorption capacity of BCBC-600-2 reached 16.39 mg/g. With an applied voltage of 4 V and hydraulic retention time of 4 h, the nitrate removal efficiency (NRE) reached 75.8%. In comparison, the NRE was only 32.9% without voltage and 25.7% with graphite cathode. Meanwhile, the average nitrate removal rate of biochar electrode was also higher than that of graphite cathode under the same conditions. Therefore, biochar electrode can provide full play to the coupling effect of adsorption and electroreduction processes and obtain more powerful nitrate removal ability. Moreover, the biochar electrode could inhibit the accumulation of nitrite and improve the selectivity of electrochemical reduction. This study not only provides a high-quality biochar electrode material, but also provides a new idea for nitrate removal in groundwater

    Exogenous melatonin accelerates seed germination in cotton (Gossypium hirsutum L.).

    No full text
    Seed germination is considered the beginning of the spermatophyte lifecycle, and it is a crucial stage in determining subsequent plant growth and development. Although many previous studies have found that melatonin can promote seed germination, the role of melatonin in cotton germination remains unexamined. The main objective of this study is the characterization of potential promotional effects of melatonin (at doses of 0, 10, 20, 50, 100 and 200 μM) on cotton seed germination. This experiment demonstrated that low concentrations of melatonin can promote germination, while high concentrations failed to promote germination and even inhibited germination. Together, these results indicate that a 20 μM melatonin treatment optimally promotes cotton seed germination. Compared with the control, germination potential (GP), germination rate (GR), and final fresh weight (FW) increased by 16.67%, 12.30%, and 4.81%, respectively. Although low concentrations of melatonin showed some improvement in vigor index (VI), germination index (GI), and mean germination time (MGT), these effects were not statistically significant. Antioxidant enzyme activity during seed germination was most prominent under the 20 μM melatonin treatment. Superoxide dismutase (SOD) and peroxidase (POD) activities were significantly increased by 10.37-59.73% and 17.79-47.68%, respectively, compared to the melatonin-free control. Malondialdehyde (MDA) content was reduced by 16.73-40.33%. Two important plant hormones in seed germination, abscisic acid (ABA) and gibberellins (GAs), were also studied. As melatonin concentration increased, ABA content in seeds decreased first and then increased, and GA3 content showed a diametrically opposite trend, in which the 20 μM melatonin treatment was optimal. The 20 μM melatonin treatment reduced ABA content in seeds by 42.13-51.68%, while the 20 μM melatonin treatment increased GA3 content in seeds to about 1.7-2.5 times that of seeds germinated without melatonin. This study provides new evidence suggesting that low concentrations of melatonin can promote cotton seed germination by increasing the activity of antioxidant enzymes, thereby reducing the accumulation of MDA and regulating plant hormones. This has clear applications for improving the germination rate of cotton seeds using melatonin
    corecore