7,271 research outputs found

    The two-phase approximation for black hole collisions: Is it robust?

    Get PDF
    Recently Abrahams and Cook devised a method of estimating the total radiated energy resulting from collisions of distant black holes by applying Newtonian evolution to the holes up to the point where a common apparent horizon forms around the two black holes and subsequently applying Schwarzschild perturbation techniques . Despite the crudeness of their method, their results for the case of head-on collisions were surprisingly accurate. Here we take advantage of the simple radiated energy formula devised in the close-slow approximation for black hole collisions to test how strongly the Abrahams-Cook result depends on the choice of moment when the method of evolution switches over from Newtonian to general relativistic evolution. We find that their result is robust, not depending strongly on this choice.Comment: 4 pages, 3 figures, submitted to Classical and Quantum Gravit

    Lateral shift of the transmitted light beam through a left-handed slab

    Full text link
    It is reported that when a light beam travels through a slab of left-handed medium in the air, the lateral shift of the transmitted beam can be negative as well as positive. The necessary condition for the lateral shift to be positive is given. The validity of the stationary-phase approach is demonstrated by numerical simulations for a Gaussian-shaped beam. A restriction to the slab's thickness is provided that is necessary for the beam to retain its profile in the traveling. It is shown that the lateral shift of the reflected beam is equal to that of the transmitted beam in the symmetric configuration.Comment: 14 pages, 4 figure

    Physical mechanism of superluminal traversal time: interference between multiple finite wave packets

    Get PDF
    The mechanism of superluminal traversal time through a potential well or potential barrier is investigated from the viewpoint of interference between multiple finite wave packets, due to the multiple reflections inside the well or barrier. In the case of potential-well traveling that is classically allowed, each of the successively transmitted constituents is delayed by a subluminal time. When the thickness of the well is much smaller in comparision with a characteristic length of the incident wave packet, the reshaped wave packet in transmission maintains the profile of the incident wave packet. In the case of potential-barrier tunneling that is classically forbidden, though each of the successively transmitted constituents is delayed by a time that is independent of the barrier thickness, the interference between multiple transmitted constituents explains the barrier-thickness dependence of the traversal time for thin barriers and its barrier-thickness independence for thick barriers. This manifests the nature of Hartman effect.Comment: 9 pages, 3 figures, Some comments and suggestions are appreciate

    Comment on "Single-mode excited entangled coherent states"

    Full text link
    In Xu and Kuang (\textit{J. Phys. A: Math. Gen.} 39 (2006) L191), the authors claim that, for single-mode excited entangled coherent states Ψ±(α,m)>| \Psi_{\pm}(\alpha,m)>, \textquotedblleft the photon excitations lead to the decrease of the concurrence in the strong field regime of α2| \alpha | ^{2} and the concurrence tends to zero when α2| \alpha | ^{2}\to \infty". This is wrong.Comment: 4 apges, 2 figures, submitted to JPA 15 April 200

    Efficient quantum cryptography network without entanglement and quantum memory

    Full text link
    An efficient quantum cryptography network protocol is proposed with d-dimension polarized photons, without resorting to entanglement and quantum memory. A server on the network, say Alice, provides the service for preparing and measuring single photons whose initial state are |0>. The users code the information on the single photons with some unitary operations. For preventing the untrustworthy server Alice from eavesdropping the quantum lines, a nonorthogonal-coding technique (decoy-photon technique) is used in the process that the quantum signal is transmitted between the users. This protocol does not require the servers and the users to store the quantum state and almost all of the single photons can be used for carrying the information, which makes it more convenient for application than others with present technology. We also discuss the case with a faint laser pulse.Comment: 4 pages, 1 figures. It also presented a way for preparing decoy photons without a sinigle-photon sourc

    Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement

    Full text link
    We present a way for symmetric multiparty-controlled teleportation of an arbitrary two-particle entangled state based on Bell-basis measurements by using two Greenberger-Horne-Zeilinger states, i.e., a sender transmits an arbitrary two-particle entangled state to a distant receiver, an arbitrary one of the n+1n+1 agents via the control of the others in a network. It will be shown that the outcomes in the cases that nn is odd or it is even are different in principle as the receiver has to perform a controlled-not operation on his particles for reconstructing the original arbitrary entangled state in addition to some local unitary operations in the former. Also we discuss the applications of this controlled teleporation for quantum secret sharing of classical and quantum information. As all the instances can be used to carry useful information, its efficiency for qubits approaches the maximal value.Comment: 9 pages, 3 figures; the revised version published in Physical Review A 72, 022338 (2005). The detail for setting up a GHZ-state quantum channel is adde

    Gas storage using fullerene based adsorbents

    Get PDF
    This invention is directed to the synthesis of high bulk density high gas absorption capacity adsorbents for gas storage applications. Specifically, this invention is concerned with novel gas absorbents with high gravimetric and volumetric gas adsorption capacities which are made from fullerene-based materials. By pressing fullerene powder into pellet form using a conventional press, then polymerizing it by subjecting the fullerene to high temperature and high inert gas pressure, the resulting fullerene-based materials have high bulk densities and high gas adsorption capacities. By pre-chemical modification or post-polymerization activation processes, the gas adsorption capacities of the fullerene-based adsorbents can be further enhanced. These materials are suitable for low pressure gas storage applications, such as oxygen storage for home oxygen therapy uses or on-board vehicle natural gas storage. They are also suitable for storing gases and vapors such as hydrogen, nitrogen, carbon dioxide, and water vapor

    Localization of Bulk Matters on a Thick Anti-de Sitter Brane

    Full text link
    In this paper, we investigate the localization and the mass spectra of gravity and various bulk matter fields on a thick anti-de Sitter (AdS) brane, by presenting the mass-independent potentials of the Kaluza-Klein (KK) modes in the corresponding Schr\"{o}dinger equations. For gravity, the potential of the KK modes tends to infinity at the boundaries of the extra dimension, which leads to an infinite number of the bound KK modes. Although the gravity zero mode cannot be localized on the AdS brane, the massive modes are trapped on the brane. The scalar perturbations of the thick AdS brane have been analyzed, and the brane is stable under the scalar perturbations. For spin-0 scalar fields and spin-1 vector fields, the potentials of the KK modes also tend to infinity at the boundaries of the extra dimension, and the characteristic of the localization is the same as the case of gravity. For spin-1/2 fermions, by introducing the usual Yukawa coupling ηΨˉϕΨ\eta\bar{\Psi}\phi\Psi with the positive coupling constant η\eta, the four-dimensional massless left-chiral fermion and massive Dirac fermions are obtained on the AdS thick brane.Comment: 23 pages, 9 figure

    Effect of a Zn impurity on T_c and its implication to pairing symmetry in LaFeAsO1x_{1-x}Fx_x

    Full text link
    The effect of non-magnetic Zn impurity on superconductivity in LaFe1y_{1-y}Zny_yAsO1x_{1-x}Fx_x system is studied systematically. In the presence of Zn impurity, the superconducting transition temperature increases in the under-doped regime, remains unchanged in the optimally doped regime, and is severely suppressed in the over-doped regime. Our results suggest a switch of the symmetry of the superconducting order parameters from a ss-wave to s±s_{\pm} or dd-wave states as the charge carrier doping increases in FeAs-based superconductors.Comment: 4 pages, 4 figures. Format changed and a few revisons mad

    Suppressing nano-scale stick-slip motion by feedback

    Full text link
    When a micro cantilever with a nano-scale tip is manipulated on a substrate with atomic-scale roughness, the periodic lateral frictional force and stochastic fluctuations may induce stick-slip motion of the cantilever tip, which greatly decreases the precision of the nano manipulation. This unwanted motion cannot be reduced by open-loop control especially when there exist parameter uncertainties in the system model, and thus needs to introduce feedback control. However, real-time feedback cannot be realized by the existing virtual reality virtual feedback techniques based on the position sensing capacity of the atomic force microscopy (AFM). To solve this problem, we propose a new method to design real-time feedback control based on the force sensing approach to compensate for the disturbances and thus reduce the stick-slip motion of the cantilever tip. Theoretical analysis and numerical simulations show that the controlled motion of the cantilever tip tracks the desired trajectory with much higher precision. Further investigation shows that our proposal is robust under various parameter uncertainties. Our study opens up new perspectives of real-time nano manipulation.Comment: 8 pages, 10 figure
    corecore