791 research outputs found

    Fair trade in insurance industry: Premium determination of Taiwan automobile insurance

    Get PDF
    This paper examines premium determination of voluntary automobile insurance policy and risk classification under a heavily regulated rating system in Taiwan. We investigate the distribution of actual premium and pure premium, based on unique data to test if premium reflect appropriate gender-age factor. The reasonableness of loading and the difference in driving exposure between policyholder and driver are investigated for three different types of policy. An adjustment of gender-age premium coefficients is called for

    Octenylsuccinate quinoa starch granule-stabilized pickering emulsion gels: preparation, microstructure and gelling mechanism

    Get PDF
    The development of emulsion gels has attracted increasing interests due to their potential applications as oil structuring templates and release-controlled carriers for sensitive lipid-soluble bioactive compounds. This work aimed to elucidate the importance of changing the degree of substitution (DS, 0.0072–0.0286) and oil volume fraction (Φ, 10–90%) to achieve octenylsuccinate (OS) quinoa starch granule-based Pickering emulsion gels. The gelation process, droplet size distribution, rheological properties and microstructure of Pickering emulsion gels formed at various DS and Φ values were evaluated. Octenylsuccinylation did not change the morphology or the granule size of quinoa starch but significantly increased the contact angle from 36.2° to 68.7°. OS quinoa starch granule-stabilized Pickering emulsion gels were formed at a DS of 0.0286 with Φ values ranging from 50 to 70%. At the Φ value of 70%, increasing DS progressively increased the apparent viscosity (η) and storage modulus (G′) of the emulsions as a result of the adsorption of more OS quinoa starch granules at the oil/water interface. Both η and G′ showed an increasing trend as a function of Φ (50–70%) at a DS value of 0.0286, and this was closely related to the microstructure of the formed emulsion gels. The network of OS quinoa starch-based Pickering emulsion gels at high Φ values (e.g., 60% and 70%) was mainly composed of compact “aggregated” oil droplets, which was largely attributed to the inter-droplet interactions. These results are of great help in understanding the gelling mechanism and the development of starch granule-based Pickering emulsion gels

    Effects of limited moisture content and storing temperature on retrogradation of rice starch

    Get PDF
    The objective of this study is to investigate the effects of limited moisture content and storing temperature on the retrogradation of rice starch. Starch was gelatinized in various moisture contents (30–42%) and rice paste was stored at different temperatures (4 °C, 15 °C, 30 °C, −18/30 °C and 4/30 °C). X-ray diffraction (XRD) analysis revealed that after retrogradation, the crystalline type of rice starch changed from A-type to B + V type. The B-type crystallinity of retrograded rice starch under 30 °C was the highest among the five temperature conditions, and an increase in B-type crystallinity with increasing moisture content was observed. Differential scanning calorimetry (DSC) results revealed that rice starch retrogradation consists of recrystallization of amylopectin and amylose, and is mainly attributed to amylopectin. The higher moisture content was favorable for amylopectin recrystallization, whereas the moisture content had little effect on the amylose recrystallization. The optimal temperature for amylopectin and amylose recrystallization was 4 °C and 15 °C, respectively. The amylopectin recrystallization enthalpy of rice starch stored at 4/30 °C was mediated between 4 °C and 30 °C but always higher than that at −18/30 °C. On the whole, after being heated at 42% moisture content and stored at 4 °C, rice starch showed the maximum total retrogradation enthalpy (8.44 J/g)

    Exploring the role of gut microbiota in advancing personalized medicine

    Get PDF
    Ongoing extensive research in the field of gut microbiota (GM) has highlighted the crucial role of gut-dwelling microbes in human health. These microbes possess 100 times more genes than the human genome and offer significant biochemical advantages to the host in nutrient and drug absorption, metabolism, and excretion. It is increasingly clear that GM modulates the efficacy and toxicity of drugs, especially those taken orally. In addition, intra-individual variability of GM has been shown to contribute to drug response biases for certain therapeutics. For instance, the efficacy of cyclophosphamide depends on the presence of Enterococcus hirae and Barnesiella intestinihominis in the host intestine. Conversely, the presence of inappropriate or unwanted gut bacteria can inactivate a drug. For example, dehydroxylase of Enterococcus faecalis and Eggerthella lenta A2 can metabolize L-dopa before it converts into the active form (dopamine) and crosses the blood–brain barrier to treat Parkinson’s disease patients. Moreover, GM is emerging as a new player in personalized medicine, and various methods are being developed to treat diseases by remodeling patients’ GM composition, such as prebiotic and probiotic interventions, microbiota transplants, and the introduction of synthetic GM. This review aims to highlight how the host’s GM can improve drug efficacy and discuss how an unwanted bug can cause the inactivation of medicine

    Hey2 functions in parallel with Hes1 and Hes5 for mammalian auditory sensory organ development

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>During mouse development, the precursor cells that give rise to the auditory sensory organ, the organ of Corti, are specified prior to embryonic day 14.5 (E14.5). Subsequently, the sensory domain is patterned precisely into one row of inner and three rows of outer sensory hair cells interdigitated with supporting cells. Both the restriction of the sensory domain and the patterning of the sensory mosaic of the organ of Corti involve Notch-mediated lateral inhibition and cellular rearrangement characteristic of convergent extension. This study explores the expression and function of a putative Notch target gene.</p> <p>Results</p> <p>We report that a putative Notch target gene, hairy-related basic helix-loop-helix (bHLH) transcriptional factor Hey2, is expressed in the cochlear epithelium prior to terminal differentiation. Its expression is subsequently restricted to supporting cells, overlapping with the expression domains of two known Notch target genes, <it>Hairy </it>and enhancer of split homolog genes <it>Hes1 </it>and <it>Hes5</it>. In combination with the loss of <it>Hes1 </it>or <it>Hes5</it>, genetic inactivation of <it>Hey2 </it>leads to increased numbers of mis-patterned inner or outer hair cells, respectively. Surprisingly, the ectopic hair cells in <it>Hey2 </it>mutants are accompanied by ectopic supporting cells. Furthermore, <it>Hey2</it><sup>-/-</sup><it>;Hes1</it><sup>-/- </sup>and <it>Hey2</it><sup>-/-</sup><it>;Hes1</it><sup>+/- </sup>mutants show a complete penetrance of early embryonic lethality.</p> <p>Conclusion</p> <p>Our results indicate that <it>Hey2 </it>functions in parallel with <it>Hes1 </it>and <it>Hes5 </it>in patterning the organ of Corti, and interacts genetically with <it>Hes1 </it>for early embryonic development and survival. Our data implicates expansion of the progenitor pool and/or the boundaries of the developing sensory organ to account for patterning defects observed in <it>Hey2 </it>mutants.</p
    corecore