69 research outputs found

    Identification of Novel Targets of Knee Osteoarthritis Shared by Cartilage and Synovial Tissue

    Get PDF
    Arthritis is the leading cause of disability among adults, while osteoarthritis (OA) is the most common form of arthritis that results in cartilage loss. However, accumulating evidence suggests that the protective hyaline cartilage should not be the sole focus of OA treatment. Particularly, synovium also plays essential roles in OA’s initiation and progression and warrants serious consideration when battling against OA. Thus, biomarkers with similar OA-responsive expressions in cartilage and synovium should be the potential targets for OA treatment. On the other hand, molecules with a distinguished response during OA in cartilage and synovium should be ruled out as OA therapeutic(s) to avoid controversial effects in different tissues. Here, to pave the path for developing a new generation of OA therapeutics, two published transcriptome datasets of knee articular cartilage and synovium were analyzed in-depth. Genes with statistically significantly different expression in OA and healthy cartilage were compared with those in the synovium. Thirty-five genes with similar OA-responsive expression in both tissues were identified while recognizing three genes with opposite OA-responsive alteration trends in cartilage and synovium. These genes were clustered based on the currently available knowledge, and the potential impacts of these clusters in OA were explored. © 2020 by the authors. Licensee MDPI, Basel, Switzerland

    Cartilage Targets of Knee Osteoarthritis Shared by Both Genders

    Get PDF
    As the leading cause of disability, osteoarthritis (OA) affects people of all ages, sexes, and races. With the increasing understanding of OA, the sex differences have attracted specific attention as the burden of OA is greater in women. There is no doubt that gender-specific OA management has great potential for precision treatment. On the other hand, from the marketing aspect, a medication targeting the OA-responsive biomarker(s) shared by both genders is more favorable for drug development. Thus, in the current study, a published transcriptome dataset of knee articular cartilage was used to compare OA and healthy samples for identifying the genes with the same significantly different expression trend in both males and females. With 128 genes upregulated and 143 genes downregulated in both OA males and females, 9 KEGG pathways have been enriched based on the current knowledge, including ‘renal cell carcinoma,’ ‘ECM-receptor interaction,’ ‘HIF-1 signaling pathway,’ ‘MicroRNAs in cancer,’ ‘focal adhesion,’ ‘Relaxin signaling pathway,’ ‘breast cancer,’ ‘PI3K-Akt signaling pathway,’ and ‘human papillomavirus infection.’ Here, we explore the potential impacts of these clusters in OA. We also analyze the identified ‘cell plasma membrane related genes’ in-depth to identify the potential chondrocyte cell surface target(s) of OA management. © 2021 by the authors. Licensee MDPI, Basel, Switzerland

    A Simple Technique Using a Modified Nance Appliance as Anchorage for Maxillary Molar Distalization—Two Case Reports

    Get PDF
    Maxillary molar distalization to correct a dental Class II molar relationship and to create space to relieve crowding has been a long-lasting subject of debate in orthodontics. Generally, to distalize maxillary molars, an intra-arch distalization appliance is favored over an inter-arch appliance since it does not utilize mandibular dentition as an anchorage, so some unwanted side effects on mandibular incisors can be avoided. A variety of intra-arch appliances have been developed to distalize maxillary molars, such as the pendulum, Jones jig, first class appliance, distal jet, and modified C-palatal plate. Although they could achieve efficient molar distalization, the learning curve of proper appliance insertion and activation is relatively long. In addition, the appliances are not comfortable for the patients due to the bulky activation units, especially when the activation units are designed in the palatal area. The current manuscript describes a novel and effective maxillary intra-arch molar distalization appliance—a modified Nance appliance technique, which consists of: (1) palatally, a big acrylic button against the palatal rugae and connected to the premolars with wide mesh pads; (2) buccally, regular brackets on maxillary premolars and first molars with sectional round stainless steel archwires and open coil springs between the second premolar and first molar. Either bilateral or unilateral maxillary molar distalization can be achieved with this appliance, and the Class II elastics are not needed. It is simple to be fabricated, delivered, and activated, and it is comfortable for patients. © 2022 by the authors. Licensee MDPI, Basel, Switzerland

    Males and Females Have Distinct Molecular Events in the Articular Cartilage during Knee Osteoarthritis

    Get PDF
    Osteoarthritis (OA) is a major public health challenge that imposes a remarkable burden on the affected individuals and the healthcare system. Based on the clinical observation, males and females have different prevalence rates and severity levels of OA. Thus, sex‐based differences may play essential roles in OA’s prognosis and treatment outcomes. To date, the comprehensive understanding of the relationship between sex and OA is still largely lacking. In the current study, we analyzed a published transcriptome dataset of knee articular cartilage (GSE114007) from 18 healthy (five females, 13 males) and 20 OA (11 females, nine males) donors to provide a slight insight into this important but complex issue. First, comparing female healthy cartilage samples with those of males revealed 36 differential expression genes (DEGs), indicating the fundamental sex‐related differences at the molecular level. Meanwhile, 923 DEGs were distinguished between OA and healthy female cartilage, which can be enriched to 15 Reactome pathways. On the other hand, when comparing OA and healthy male cartilage, there are only 419 DEGs were identified, and only six pathways were enriched against the Reactome database. The different signaling response to OA in the male and female cartilage was further enforced by recognizing 50 genes with significantly different OA‐responsive expression fold changes in males and females. Particularly, 14 Reactome pathways, such as “Extracellular matrix organization”, “Collagen biosynthesis and modifying enzymes”, “Dis-solution of fibrin clot”, and “Platelet Aggregation (Plug formation)”, can be noted from these 50 sex-dependent OA‐responsive genes. Overall, the current study explores the Sex as a Biological Variable (SABV) at the transcriptomic level in the knee articular cartilage in both healthy status and OA event, which could help predict the differential OA prognosis and treatment outcome of males and female patients. © 2021 by the authors. Li-censee MDPI, Basel, Switzerland

    Remote Corticotomy Accelerates Orthodontic Tooth Movement in a Rat Model

    Get PDF
    Introduction. With an increasing demand for orthodontic treatment for adult patients, orthodontic professionals are constantly seeking novel strategies and technologies that can accelerate tooth movement in order to shorten the treatment period. For instance, in recent years, the influences of different surgical techniques on orthodontic tooth movement in the ipsilateral side of surgery were intensively investigated. Here, we attempt to examine if corticotomy could also affect the rate of tooth movement in the contralateral side of the surgery by using a rodent model. Materials and Methods. 72 eight-week-old Sprague-Dawley rats were randomly divided into three groups as follows: The Control group (orthodontic treatment devices delivered only, no tooth movement), the orthodontic tooth movement (OTM) group (orthodontic treatment devices delivered and orthodontic treatment performed), and the Corticotomy + OTM group (remote corticotomy performed, orthodontic treatment devices delivered, followed by orthodontic treatment). The surgical procedure was conducted on the right side of the maxilla at the time of appliance placement and a force of 60 g was applied between the maxillary left first molar and maxillary incisors using nickel-titanium springs to stimulate OTM. The OTM distance and speed were tracked at 3, 7, 14, and 28 days post-surgery, followed by histological and immunohistochemical assessments. Results. In comparison with orthodontic treatment only, the contralateral corticotomy significantly accelerated OTM. Furthermore, animals undergoing corticotomy + OTM presented with a greater number of osteoclasts on the compression side, stronger staining of the osteogenic marker on the tension side, and higher expression of an inflammatory marker than the OTM group animals. Conclusion. Our current study demonstrates that remote corticotomy effectively accelerates alveolar bone remodeling and OTM. The study enriches our understanding of the regional acceleratory phenomenon (RAP) and offers an alternative strategy for accelerating OTM to shorten the orthodontic treatment period. © 2019 Min Zou et al

    Novel Cell Sources for Bone Regeneration

    Get PDF
    A plethora of both acute and chronic conditions, including traumatic, degenerative, malignant, or congenital disorders, commonly induce bone disorders often associated with severe persisting pain and limited mobility. Over 1 million surgical procedures involving bone excision, bone grafting, and fracture repair are performed each year in the U.S. alone, resulting in immense levels of public health challenges and corresponding financial burdens. Unfortunately, the innate self-healing capacity of bone is often inadequate for larger defects over a critical size. Moreover, as direct transplantation of committed osteoblasts is hindered by deficient cell availability, limited cell spreading, and poor survivability, an urgent need for novel cell sources for bone regeneration is concurrent. Thanks to the development in stem cell biology and cell reprogramming technology, many multipotent and pluripotent cells that manifest promising osteogenic potential are considered the regenerative remedy for bone defects. Considering these cells\u27 investigation is still in its relative infancy, each of them offers their own particular challenges that must be conquered before the large-scale clinical application. © 2021 The Authors. MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd

    A User-Friendly Protocol for Mandibular Segmentation of CBCT Images for Superimposition and Internal Structure Analysis

    Get PDF
    Background: Since cone-beam computed tomography (CBCT) technology has been widely adopted in orthodontics, multiple attempts have been made to devise techniques for mandibular segmentation and 3D superimposition. Unfortunately, as the software utilized in these methods are not specifically designed for orthodontics, complex procedures are often necessary to analyze each case. Thus, this study aimed to establish an orthodontist-friendly protocol for segmenting the mandible from CBCT images that maintains access to the internal anatomic structures. Methods: The “sculpting tool” in the Dolphin 3D Imaging software was used for segmentation. The segmented mandible images were saved as STL files for volume matching in the 3D Slicer to validate the repeatability of the current protocol and were exported as DICOM files for internal structure analysis and voxel-based superimposition. Results: The mandibles of all tested CBCT datasets were successfully segmented. The volume matching analysis showed high consistency between two independent segmentations for each mandible. The intraclass correlation coefficient (ICC) analysis on 20 additional CBCT mandibular segmentations further demonstrated the high consistency of the current protocol. Moreover, all of the anatomical structures for superimposition identified by the American Board of Orthodontics were found in the voxel-based superimposition, demonstrating the ability to conduct precise internal structure analyses with the segmented images. Conclusion: An efficient and precise protocol to segment the mandible while retaining access to the internal structures was developed on the basis of CBCT images. © 2021 by the authors. Licensee MDPI, Basel, Switzerland

    Transverse Growth of the Maxillo-Mandibular Complex in Untreated Children: A Longitudinal Cone Beam Computed Tomography Study

    Get PDF
    The aim of this study is to evaluate the longitudinal transverse growth of the maxillo-mandibular complex in untreated children using the Cone Beam Computed Tomography (CBCT)Two sets of scans on 12 males (mean 8.75 years at T1 and 11.52 years at T2) and 18 females (mean 9.09 years at T1 and 10.80 years at T2) were analyzed using Dolphin 3D imaging. The transverse widths of various maxillary and mandibular skeletal landmarks and the dentoalveolar and dental landmarks at the level of first molars were measured. Overall, there were greater increases in the transverse dimension in the posterior than anterior portions of the maxilla and mandible. The increase in intergonial width of the mandible seems to be primarily due to the lengthening of the mandibular body. The dentoalveolar process at the first molar level increases at an equal rate corono-apically and is independent to the changes in molar inclination. When comparing maxillary dentoalveolar changes with that of the mandible, greater increases were noticed in the maxilla, which might be explained by the presence of sutural growth in the maxilla. Moreover, the first molars maintain their coordination with each other despite the differential increase in the maxillary and mandibular dentoalveolar processes. © 2021 by the authors. Licensee MDPI, Basel, Switzerland

    Sagittal and Vertical Growth of the Maxillo–Mandibular Complex in Untreated Children: A Longitudinal Study on Lateral Cephalograms Derived from Cone Beam Computed Tomography

    Get PDF
    The aim of this longitudinal study was to evaluate the sagittal and vertical growth of the maxillo–mandibular complex in untreated children using orthogonal lateral cephalograms com-pressed from cone beam computed tomography (CBCT). Two sets of scans, on 12 males (mean 8.75 years at T1, and 11.52 years at T2) and 18 females (mean 9.09 years at T1, and 10.80 years at T2), were analyzed using Dolphin 3D imaging. The displacements of the landmarks and rotations of both jaws relative to the cranial base were measured using the cranial base, and the maxillary and mandibular core lines. From T1 to T2, relative to the cranial base, the nasion, orbitale, A-point, and B-point moved anteriorly and inferiorly. The porion moved posteriorly and inferiorly. The ANB and mandibular plane angle decreased. All but one subject had forward rotation in reference to the cranial base. The maxillary and mandibular superimpositions showed no sagittal change on the A-point and B-point. The U6 and U1 erupted at 0.94 and 1.01 mm/year (males) and 0.82 and 0.95 mm/year (females), respectively. The L6 and L1 erupted at 0.66 and 0.88 mm/year (males), and at 0.41 mm/year for both the L6 and the L1 (females), respectively. © 2021 by the authors. Licensee MDPI, Basel, Switzerland
    corecore