13,547 research outputs found

    LO-Net: Deep Real-time Lidar Odometry

    Full text link
    We present a novel deep convolutional network pipeline, LO-Net, for real-time lidar odometry estimation. Unlike most existing lidar odometry (LO) estimations that go through individually designed feature selection, feature matching, and pose estimation pipeline, LO-Net can be trained in an end-to-end manner. With a new mask-weighted geometric constraint loss, LO-Net can effectively learn feature representation for LO estimation, and can implicitly exploit the sequential dependencies and dynamics in the data. We also design a scan-to-map module, which uses the geometric and semantic information learned in LO-Net, to improve the estimation accuracy. Experiments on benchmark datasets demonstrate that LO-Net outperforms existing learning based approaches and has similar accuracy with the state-of-the-art geometry-based approach, LOAM

    Holographic entanglement of purification for thermofield double states and thermal quench

    Full text link
    We explore the properties of holographic entanglement of purification (EoP) for two disjoint strips in the Schwarzschild-AdS black brane and the Vaidya-AdS black brane spacetimes. For two given strips on the same boundary of Schwarzschild-AdS spacetime, there is an upper bound of the separation beyond which the holographic EoP will always vanish no matter how wide the strips are. In the case that two strips are in the two boundaries of the spacetime respectively, we find that the holographic EoP exists only when the strips are wide enough. If the width is finite, the EoP can be nonzero in a finite time region. For thermal quench case, we find that the equilibrium time of holographic EoP is only sensitive to the width of strips, while that of the holographic mutual information is sensitive not only to the width of strips but also to their separation.Comment: 23 pages, 12 figures, major correction of section

    Nuclear stopping and sideward-flow correlation from 0.35A to 200A GeV

    Full text link
    The correlation between the nuclear stopping and the scale invariant nucleon sideward flow at energies ranging from those available at the GSI heavy ion synchrotron (SIS) to those at the CERN Super Proton Synchrotron (SPS) is studied within ultrarelativistic quantum molecular dynamics (UrQMD). The universal behavior of the two experimental observables for various colliding systems and scale impact parameters are found to be highly correlated with each other. As there is no phase transition mechanism involved in the UrQMD, the correlation may be broken down by the sudden change of the bulk properties of the nuclear matter, such as the formation of quark-gluon plasma (QGP), which can be employed as a QGP phase transition signal in high-energy heavy ion collisions. Furthermore, we also point out that the appearance of a breakdown of the correlation may be a powerful tool for searching for the critical point on the QCD phase diagram.Comment: 5 pages, 4 figure
    • …
    corecore