420 research outputs found

    Telecom photon interface of solid-state quantum nodes

    Full text link
    Solid-state spins such as nitrogen-vacancy (NV) center are promising platforms for large-scale quantum networks. Despite the optical interface of NV center system, however, the significant attenuation of its zero-phonon-line photon in optical fiber prevents the network extended to long distances. Therefore a telecom-wavelength photon interface would be essential to reduce the photon loss in transporting quantum information. Here we propose an efficient scheme for coupling telecom photon to NV center ensembles mediated by rare-earth doped crystal. Specifically, we proposed protocols for high fidelity quantum state transfer and entanglement generation with parameters within reach of current technologies. Such an interface would bring new insights into future implementations of long-range quantum network with NV centers in diamond acting as quantum nodes.Comment: 10 pages, 5 figure

    Energy-recycling Blockchain with Proof-of-Deep-Learning

    Full text link
    An enormous amount of energy is wasted in Proofof-Work (PoW) mechanisms adopted by popular blockchain applications (e.g., PoW-based cryptocurrencies), because miners must conduct a large amount of computation. Owing to this, one serious rising concern is that the energy waste not only dilutes the value of the blockchain but also hinders its further application. In this paper, we propose a novel blockchain design that fully recycles the energy required for facilitating and maintaining it, which is re-invested to the computation of deep learning. We realize this by proposing Proof-of-Deep-Learning (PoDL) such that a valid proof for a new block can be generated if and only if a proper deep learning model is produced. We present a proof-of-concept design of PoDL that is compatible with the majority of the cryptocurrencies that are based on hash-based PoW mechanisms. Our benchmark and simulation results show that the proposed design is feasible for various popular cryptocurrencies such as Bitcoin, Bitcoin Cash, and Litecoin.Comment: 5 page

    Global regularity for the 2D micropolar Rayleigh-B\'{e}nard convection system with velocity zero dissipation and temperature critical dissipation

    Full text link
    This paper studies the global regularity problem for the 2D micropolar Rayleigh-B\'{e}nard convection system with velocity zero dissipation, micro-rotation velocity Laplace dissipation and temperature critical dissipation. By introducing a combined quantity and using the technique of Littlewood-Paley decomposition, we establish the global regularity result of solutions to this system.Comment: 15 page

    Training Transformers with 4-bit Integers

    Full text link
    Quantizing the activation, weight, and gradient to 4-bit is promising to accelerate neural network training. However, existing 4-bit training methods require custom numerical formats which are not supported by contemporary hardware. In this work, we propose a training method for transformers with all matrix multiplications implemented with the INT4 arithmetic. Training with an ultra-low INT4 precision is challenging. To achieve this, we carefully analyze the specific structures of activation and gradients in transformers to propose dedicated quantizers for them. For forward propagation, we identify the challenge of outliers and propose a Hadamard quantizer to suppress the outliers. For backpropagation, we leverage the structural sparsity of gradients by proposing bit splitting and leverage score sampling techniques to quantize gradients accurately. Our algorithm achieves competitive accuracy on a wide range of tasks including natural language understanding, machine translation, and image classification. Unlike previous 4-bit training methods, our algorithm can be implemented on the current generation of GPUs. Our prototypical linear operator implementation is up to 2.2 times faster than the FP16 counterparts and speeds up the training by up to 35.1%.Comment: 9 pages, 8 figure

    Type IIs restriction based combinatory modulation technique for metabolic pathway optimization

    Get PDF
    Additional file 1: Table S1. Oligonucleotides used in this study

    Exponentially Enhanced non-Hermitian Cooling

    Full text link
    Certain non-Hermitian systems exhibit the skin effect, whereby the wavefunctions become exponentially localized at one edge of the system. Such exponential amplification of wavefunction has received significant attention due to its potential applications in e.g., classical and quantum sensing. However, the opposite edge of the system, featured by the exponentially suppressed wavefunctions, remains largely unexplored. Leveraging this phenomenon, we introduce a non-Hermitian cooling mechanism, which is fundamentally distinct from traditional refrigeration or laser cooling techniques. Notably, non-Hermiticity will not amplify thermal excitations, but rather redistribute them. Hence, thermal excitations can be cooled down at one edge of the system, and the cooling effect can be exponentially enhanced by the number of auxiliary modes, albeit with a lower bound that depends on the dissipative interaction with the environment. Non-Hermitian cooling does not rely on intricate properties such as exceptional points or non-trivial topology, and it can apply to a wide range of Bosonic modes such as photons, phonons, magnons, etc.Comment: 12 pages, 4 figure

    Efficient Quantum Transduction Using Anti-Ferromagnetic Topological Insulators

    Full text link
    Transduction of quantum information between distinct quantum systems is an essential step in various applications, including quantum networks and quantum computing. However, quantum transduction needs to mediate between photons with vastly different frequencies, making it challenging to design high-performance transducers, due to multifaceted and sometimes conflicting requirements. In this work, we first discuss some general principles for quantum transducer design, and then propose solid-state anti-ferromagnetic topological insulators to serve as highly effective transducers. First, topological insulators exhibit band-inversion, which can greatly enhance their optical responses. Coupled with their robust spin-orbit coupling and high spin density, this property leads to strong nonlinear interaction in topological insulators, thereby substantially improving transduction efficiency. Second, the anti-ferromagnetic order can minimize the detrimental influence on other neighboring quantum systems due to magnetic interactions. Using MnBi2Te4\rm MnBi_2Te_4 as an example, we showcase that unit transduction fidelity can be achieved with modest experimental requirements, while the transduction bandwidth can reach the GHz range. The strong nonlinear interaction in magnetic topological insulators can find diverse applications, including the generation of entanglement between photons of distinct frequencies.Comment: 15 pages, 3 figure
    • …
    corecore