4 research outputs found
Method of Moments (MoM): Application for Solving Augmented Electric Field Integral Equation (AEFIE)
Surface integral equations (SIEs) are promising candidates for modeling circuits because they
reduce degrees of freedom by restricting physical unknowns on the surface, which simplifies
complex structures. However, there are still challenges related to achieving stability over a broad
frequency band. Specifically, the low frequency breakdown of electrical field integral equation
(EFIE) operator is discussed in this work. In order to solve or alleviate this problem, the
separation of irrotational and solenoidal current must be accomplished. A proposed method, the
Augmented Electrical Field Integral Equation (AEFIE), is intended to separate the current
element by introducing charge as another variable and relate irrotational current and the charge
vector. Finally, the method of moments (MoM) is applied to solve the integral equation by
projecting the current onto RWG basis and performing subspace projections to fill out the
integral equation operator matrix. For complicated circuit structure, MoM can be accelerated
using the fast multipole algorithm (FMA).Ope
The 8D05 Parasitism Gene of Meloidogyne incognita Is Required for Successful Infection of Host Roots
Parasitism genes encode effector proteins that are secreted through the stylet of root-knot nematodes to dramatically modify selected plant cells into giant-cells for feeding. The Mi8D05 parasitism gene previously identified was confirmed to encode a novel protein of 382 amino acids that had only one database homolog identified on contig 2374 within the Meloidogyne apla genome. Mi8D05 expression peaked in M. incognita parasitic second-stage juveniles within host roots and its encoded protein was limited to the subventral esophageal gland cells that produce proteins secreted from the stylet. Constitutive expression of Mi8D05 in transformed Arabidopsis thaliana plants induced accelerated shoot growth and early flowering but had no visible effects on root growth. Independent lines of transgenic Arabidopsis that expressed a double-stranded RNA complementary to Mi8D05 in host-derived RNA interference (RNAi) tests had up to 90% reduction in infection by M. incognita compared with wild-type control plants, suggesting that Mi8D05 plays a critical role in parasitism by the root-knot nematode. Yeast two-hybrid experiments confirmed the specific interaction of the Mi8D05 protein with plant aquaporin tonoplast intrinsic protein 2 (TIP2) and provided evidence that the Mi8D05 effector may help regulate solute and water transport within giant-cells to promote the parasitic interaction
Study on potential gradient in Ti anodization
Porous oxides or nanotubes are obtained through the anodization of valve metal. However, the mechanism of nanotube growth remains unclear. Traditional field-assisted dissolution (FAD) theory has many limitations, such as its inability to explain the connotation of the three stages in the current–time curve. By placing a container between two electrodes, the ions move around the container in a ring in the present study. The potential gradient during anodization was innovatively changed. Finally, the current–time curve obtained during anodization using the new device is quite different from that obtained using conventional anodizing device. This phenomenon is explained by the electronic current and ionic current theory in this paper
The 8D05 Parasitism Gene of Meloidogyne incognita Is Required for Successful Infection of Host Roots
Parasitism genes encode effector proteins that are secreted through the stylet of root-knot nematodes to dramatically modify selected plant cells into giant-cells for feeding. The Mi8D05 parasitism gene previously identified was confirmed to encode a novel protein of 382 amino acids that had only one database homolog identified on contig 2374 within the Meloidogyne apla genome. Mi8D05 expression peaked in M. incognita parasitic second-stage juveniles within host roots and its encoded protein was limited to the subventral esophageal gland cells that produce proteins secreted from the stylet. Constitutive expression of Mi8D05 in transformed Arabidopsis thaliana plants induced accelerated shoot growth and early flowering but had no visible effects on root growth. Independent lines of transgenic Arabidopsis that expressed a double-stranded RNA complementary to Mi8D05 in host-derived RNA interference (RNAi) tests had up to 90% reduction in infection by M. incognita compared with wild-type control plants, suggesting that Mi8D05 plays a critical role in parasitism by the root-knot nematode. Yeast two-hybrid experiments confirmed the specific interaction of the Mi8D05 protein with plant aquaporin tonoplast intrinsic protein 2 (TIP2) and provided evidence that the Mi8D05 effector may help regulate solute and water transport within giant-cells to promote the parasitic interaction.This article is published as Xue, B., Hamamouch, N., Li, C., Huang, G., Hussey, R. S., Baum, T. J., and Davis, E. L. 2013. The 8D05 parasitism gene of Meloidogyne incognita is required for successful infection of host roots. Phytopathology 103:175-181, doi; 10.1094/PHYTO-07-12-0173-R. Posted with permission.</p