30 research outputs found

    Exploration of Hinge Residues among GFP-like Proteins

    Get PDF
    Before the maturation of the chromophore, a fluorescent protein, just like any other three-dimensional protein structure, has to fold into the correct tertiary structure to function. We proposed that the evolutionarily conserved hinge residues, believed to be located on or near the lids of the fluorescent protein, are involved in the folding mechanism and rotation of the β-sheets and lids into the correct geometry. Acting like door hinges, these residues are translationally immobilized but rotationally active. Interference of the hinge sites may lead to allosteric effects and disruption of the protein’s functional motions. In the study, significant sequential and spatial conservation was found in conserved lid residues across 28 wild-type fluorescent proteins. Furthermore, the high rotational freedom and dihedral mobility of the conserved lid residues confirmed their behavior as hinge residues in the folding process

    Water diffusion in and out of the β-barrel of GFP and the fast maturing fluorescent protein, TurboGFP

    Get PDF
    The chromophore of fluorescent proteins is formed by an internal cyclization of the tripeptide 65SYG67 fragment and a subsequent oxidation. The oxidation is slow – the kinetics of this step is presumably improved in fast maturing GFPs. Water molecules can aid in the chromophore formation. We have used 50ns molecular dynamics simulations of the mature and immature forms of avGFP and TurboGFP to examine the diffusion of water molecules in-and-out of the protein β-barrel. Most crystal structures of GFPs have well-structured waters within hydrogen-bonding distance of Glu222 and Arg96. It has been proposed that they have an important role in chromophore formation. Stable waters are found in similar positions in all simulations conducted. The simulations confirm the existence of a pore that leads to the chromophore in the rapidly maturing TurboGFP; decreased water diffusion upon chromophore formation; and increased water diffusion due to the pore formation

    Cryo-EM of full-length α-synuclein reveals fibril polymorphs with a common structural kernel.

    Get PDF
    α-Synuclein (aSyn) fibrillar polymorphs have distinct in vitro and in vivo seeding activities, contributing differently to synucleinopathies. Despite numerous prior attempts, how polymorphic aSyn fibrils differ in atomic structure remains elusive. Here, we present fibril polymorphs from the full-length recombinant human aSyn and their seeding capacity and cytotoxicity in vitro. By cryo-electron microscopy helical reconstruction, we determine the structures of the two predominant species, a rod and a twister, both at 3.7 Å resolution. Our atomic models reveal that both polymorphs share a kernel structure of a bent β-arch, but differ in their inter-protofilament interfaces. Thus, different packing of the same kernel structure gives rise to distinct fibril polymorphs. Analyses of disease-related familial mutations suggest their potential contribution to the pathogenesis of synucleinopathies by altering population distribution of the fibril polymorphs. Drug design targeting amyloid fibrils in neurodegenerative diseases should consider the formation and distribution of concurrent fibril polymorphs

    Dana Farber Cancer Institute

    No full text

    Plane Machining by Inner-Jet Electrochemical Milling of TiB2/7050 Aluminum Matrix Composite

    No full text
    Electrochemical milling (ECM) is an ideal technique for machining thin-walled structural parts of aluminum matrix composites. Adopting a reasonable tool cathode structure, feed rate, and processing method can improve the machining efficiency. In this study, a tool cathode with a reasonable structure was selected through flow field simulation. Then, the material removal rate (MRR) and surface roughness were studied using various ECM parameters. Finally, the transverse movement and processing method in which the starting position was rotated 90° were studied, and a plane of 59 × 59 mm was machined. The experimental results show that using an appropriate tool cathode can create a more uniform flow field. The MRR was 168.6 mm3/min and the surface roughness (Ra) was 3.329 µm at a feed rate of 30 mm/min. For machining larger plane structures, a transverse movement of 7 mm is verified to be the most suitable because of the best smoothness in the middle of the two processes. By using the same machining method and rotating the starting position 90°, the flatness of the processing plane decreased from 0.296 mm to 0.251 mm, a reduction of 15.2% compared to that obtained in the first processing
    corecore