30 research outputs found

    Influence of fibre steering on the bearing performance of bolted joints in 3D printed pseudo-woven CFRP composites

    Get PDF
    Aiming to improve the bearing performance of bolted joints in carbon fibre reinforced polymer (CFRP) composites, this study investigates the impact of steered fibre paths around the hole edge within pseudo-woven (interlaced) composites that are manufactured by 3D printing. The influence of fibre steering on the crack initiation and propagation was examined through double-lap bearing tests performed on four distinct cases. Parallel to the comprehensive experimental study, digital image correlation (DIC) and X-ray computed microtomography (micro-CT) scans were performed to aid in understanding and identifying the various damage mechanisms in each specimen type. Results revealed that different patterns provided varying bearing abilities, with an employed pattern improving the initial bearing strength, initial fracture energy and ultimate fracture energy of the 3D printed pseudo-woven composite by 23.5%, 363.7% and 29.6%, respectively. Consequently, fibre steering in composites is found to be a promising method to tailor the bearing behaviour of bolted joints as required

    NVDiff: Graph Generation through the Diffusion of Node Vectors

    Full text link
    Learning to generate graphs is challenging as a graph is a set of pairwise connected, unordered nodes encoding complex combinatorial structures. Recently, several works have proposed graph generative models based on normalizing flows or score-based diffusion models. However, these models need to generate nodes and edges in parallel from the same process, whose dimensionality is unnecessarily high. We propose NVDiff, which takes the VGAE structure and uses a score-based generative model (SGM) as a flexible prior to sample node vectors. By modeling only node vectors in the latent space, NVDiff significantly reduces the dimension of the diffusion process and thus improves sampling speed. Built on the NVDiff framework, we introduce an attention-based score network capable of capturing both local and global contexts of graphs. Experiments indicate that NVDiff significantly reduces computations and can model much larger graphs than competing methods. At the same time, it achieves superior or competitive performances over various datasets compared to previous methods

    3D printing of continuous carbon fibre reinforced powder-based epoxy composites

    Get PDF
    This paper presents an experimental study on 3D printing of continuous carbon fibre reinforced thermoset epoxy composites. Powder-based solid epoxy was electrostatically flocked on the 1K continuous carbon fibre tow and then melted to fabricate composite filaments. The produced filament was printed using a modified extrusion-based printer which melted and deposited the filament following designed printing paths, to form multilayer preforms with complex geometries. After vacuum bagging and oven curing, high tensile strength (1372.4 MPa) and modulus (98.2 GPa) were obtained in the fibre direction due to the good wettability of epoxy and the consequent high fibre volume fraction (56%). The tensile tests of open-hole composites were also conducted, in which the sample with designed stress-lines fibre paths was seen to improve the ultimate strength by 95% compared with the mechanically-drilled sample. Other case studies, such as a spanner and a lattice structure, further demonstrated the design freedom of produced filaments for complex geometries

    A modified equally-spaced method (MEQS) for fibre placement in additive manufacturing of topology-optimised continuous carbon fibre-reinforced polymer composite structures

    Get PDF
    This study proposes a modified equally-spaced (MEQS) method for the path design of continuous fibres in additive manufacturing (AM) of topologically optimised composite structures. The MEQS method addresses the low fibre infill rate issue of the traditional Equally-Spaced (EQS) method by utilising the Offset method to generate looped printing paths around the internal cavities and gaps between continuous fibre paths. The developed MEQS method was first illustrated against EQS and Offset methods using an open-hole composite plate in which topology and material orientation were simultaneously optimised using the discrete–continuous parameterisation (DCP) method. Actual printing path-based finite element modelling showed that the MEQS method achieves a 25.32% increase in stiffness compared to the Offset method. Experimental testing of the additively manufactured open-hole composite plates showed that the MEQS method improves the stiffness and strength by 15.52% and 27.38%, respectively, compared to the Offset method. The proposed MEQS was further demonstrated through two other case studies by finite element modelling, showing that the stiffness of MEQS has increased by an average of 66.71% and 14.95% compared to EQS and Offset, respectively

    Cognitive impairment in Chinese adult patients with type III spinal muscular atrophy without disease-modifying treatment

    Get PDF
    ObjectiveSpinal muscular atrophy (SMA) is a neurodegenerative disorder characterized by the degeneration of motor neurons in the spinal cord. It remains uncertain whether the cognitive performance of adult patients with SMA is impaired. The objective of this study was to assess the cognitive profile of adult Chinese patients with SMA and the association between clinical features and cognitive ability, particularly executive function.MethodsThis cross-sectional study included 22 untreated adult patients with type III SMA and 20 healthy subjects. The following variables were assessed: general intelligence, memory, attention, language, executive function, depression, anxiety, and other demographic and clinical parameters. In addition, physical function was evaluated using the Hammersmith Functional Motor Scale Expanded (HFMSE), the Revised Upper Limb Module (RULM), and the 6-Minute Walk Test (6MWT).ResultsSMA patients had lower scores than healthy subjects in the Verbal Fluency Test, Stroop effect, Total Errors, Perseverative Responses, Perseverative Errors, and Non-perseverative Errors in the Wisconsin Card Sorting Test, showing impaired abilities of SMA patients in executive function. In the Attention Network Test (ANT), the results indicated that the SMA patients also had selective deficits in their executive control networks. Ambulant patients had better executive function test performance than non-ambulant ones. Compromised executive abilities in patients with SMA were correlated with a younger age at onset, poorer motor function, and higher levels of anxiety and depression.ConclusionOur study presented the distribution of cognitive impairment in a Chinese cohort with SMA. Patients with type III SMA showed selective deficits in executive function, which may be associated with disease severity, physical impairment, depression and anxiety. Future cognitive studies, accounting for motor and emotional impairment, are needed to evaluate if executive impairment is driven by specific brain changes or by those confounding factors

    Effect of Heparan Sulfate on Vasculogenesis and Dentinogenesis of Dental Pulp Stem Cells

    Get PDF
    Li A., Sasaki J.I., Huang H., et al. Effect of Heparan Sulfate on Vasculogenesis and Dentinogenesis of Dental Pulp Stem Cells. Journal of Endodontics , (2024); https://doi.org/10.1016/j.joen.2024.04.015.Introduction: Heparan sulfate (HS) is a major component of dental pulp tissue. We previously reported that inhibiting HS biosynthesis impedes endothelial differentiation of dental pulp stem cells (DPSCs). However, the underlying mechanisms by which exogenous HS induces DPSC differentiation and pulp tissue regeneration remain unknown. This study explores the impact of exogenous HS on vasculogenesis and dentinogenesis of DPSCs both in vitro and in vivo. Methods: Human-derived DPSCs were cultured in endothelial and odontogenic differentiation media and treated with HS. Endothelial differentiation of DPSCs was investigated by real-time polymerase chain reaction and capillary sprouting assay. Odontogenic differentiation was assessed through real-time polymerase chain reaction and detection of mineralized dentin-like deposition. Additionally, the influence of HS on pulp tissue was assessed with a direct pulp capping model, in which HS was delivered to exposed pulp tissue in rats. Gelatin sponges were loaded with either phosphate-buffered saline or 101–102 μg/mL HS and placed onto the pulp tissue. Following a 28-day period, tissues were investigated by histological analysis and micro–computed tomography imaging. Results: HS treatment markedly increased expression levels of key endothelial and odontogenic genes, enhanced the formation of capillary-like structures, and promoted the deposition of mineralized matrices. Treatment of exposed pulp tissue with HS in the in vivo pulp capping study induced formation of capillaries and reparative dentin. Conclusions: Exogenous HS effectively promoted vasculogenesis and dentinogenesis of DPSCs in vitro and induced reparative dentin formation in vivo, highlighting its therapeutic potential for pulp capping treatment

    A simple spontaneously active Hebbian learning model: homeostasis of activity and connectivity, and consequences for learning and epileptogenesis

    Full text link
    A spontaneously active neural system that is capable of continual learning should also be capable of homeostasis of both firing rate and connectivity. Experimental evidence suggests that both types of homeostasis exist, and that connectivity is maintained at a state that is optimal for information transmission and storage. This state is referred to as the critical state. We present a simple stochastic computational Hebbian learning model that incorporates both firing rate and critical homeostasis, and we explore its stability and connectivity properties. We also examine the behavior of our model with a simulated seizure and with simulated acute deafferentation. We argue that a neural system that is more highly connected than the critical state (i.e., one that is "supercritical") is epileptogenic. Based on our simulations, we predict that the post-seizural and post-deafferentation states should be supercritical and epileptogenic. Furthermore, interventions that boost spontaneous activity should be protective against epileptogenesis.Comment: 37 pages, 1 table, 7 figure

    Additive manufacturing of composites with tailored fibre architectures in fastened joint applications

    No full text
    This thesis investigates the enhancement of mechanical properties in carbon fibre reinforced polymer (CFRP) composites, with a specific focus on the bearing performance of fastened joints, by tailoring the fibre architectures using 3D printed continuous carbon fibre (CF) filaments. The research methodology integrates fibre steering techniques with finite element analysis (FEA) to improve the design and functionality of CFRP composites in fastened joint applications. It aims to explore the potential of tailored fibre architectures in reinforcing the mechanical robustness of these materials. A comprehensive methodology is employed combining computational modelling with rigorous experimental validation. A novel multi-scale finite element modelling approach is developed, wherein continuous CF filaments are used as the fundamental modelling units, allowing for a detailed analysis of fibre path effects on laminate performance. The experimental outcomes, evaluating the bearing response of fastened joints under double-shear tensile loading, indicate significant enhancements in bearing strength and energy absorption through precise fibre steering and path design. The research also extends to the application of these methodologies in repairing deformed composite laminates, presenting the practical utility and environmental benefits of the developed techniques. The conclusions of this study emphasise the revolutionary potential of integrating 3D printing with computational modelling in the field of composite materials. The developed methodologies not only provide insights into the mechanical behaviour of composites but also facilitate the development of novel approaches in material design and repair. This work significantly contributes to the advancement of composite material science, particularly in the context of mechanically fastened joints, offering a foundation for future innovations and applications in the industry
    corecore