17,506 research outputs found

    Robust Decentralized State Estimation and Tracking for Power Systems via Network Gossiping

    Full text link
    This paper proposes a fully decentralized adaptive re-weighted state estimation (DARSE) scheme for power systems via network gossiping. The enabling technique is the proposed Gossip-based Gauss-Newton (GGN) algorithm, which allows to harness the computation capability of each area (i.e. a database server that accrues data from local sensors) to collaboratively solve for an accurate global state. The DARSE scheme mitigates the influence of bad data by updating their error variances online and re-weighting their contributions adaptively for state estimation. Thus, the global state can be estimated and tracked robustly using near-neighbor communications in each area. Compared to other distributed state estimation techniques, our communication model is flexible with respect to reconfigurations and resilient to random failures as long as the communication network is connected. Furthermore, we prove that the Jacobian of the power flow equations satisfies the Lipschitz condition that is essential for the GGN algorithm to converge to the desired solution. Simulations of the IEEE-118 system show that the DARSE scheme can estimate and track online the global power system state accurately, and degrades gracefully when there are random failures and bad data.Comment: to appear in IEEE JSA

    A Framework for Phasor Measurement Placement in Hybrid State Estimation via Gauss-Newton

    Full text link
    In this paper, we study the placement of Phasor Measurement Units (PMU) for enhancing hybrid state estimation via the traditional Gauss-Newton method, which uses measurements from both PMU devices and Supervisory Control and Data Acquisition (SCADA) systems. To compare the impact of PMU placements, we introduce a useful metric which accounts for three important requirements in power system state estimation: {\it convergence}, {\it observability} and {\it performance} (COP). Our COP metric can be used to evaluate the estimation performance and numerical stability of the state estimator, which is later used to optimize the PMU locations. In particular, we cast the optimal placement problem in a unified formulation as a semi-definite program (SDP) with integer variables and constraints that guarantee observability in case of measurements loss. Last but not least, we propose a relaxation scheme of the original integer-constrained SDP with randomization techniques, which closely approximates the optimum deployment. Simulations of the IEEE-30 and 118 systems corroborate our analysis, showing that the proposed scheme improves the convergence of the state estimator, while maintaining optimal asymptotic performance.Comment: accepted to IEEE Trans. on Power System

    The Calabi-Yau equation on 4-manifolds over 2-tori

    Get PDF
    This paper pursues the study of the Calabi-Yau equation on certain symplectic non-Kaehler 4-manifolds, building on a key example of Tosatti-Weinkove in which more general theory had proved less effective. Symplectic 4-manifolds admitting a 2-torus fibration over a 2-torus base are modelled on one of three solvable Lie groups. Having assigned an invariant almost-Kaehler structure and a volume form that effectively varies only on the base, one seeks a symplectic form with this volume. Our approach simplifies the previous analysis of the problem, and establishes the existence of solutions in various other cases.Comment: 24 page

    Approximate Sparse Recovery: Optimizing Time and Measurements

    Full text link
    An approximate sparse recovery system consists of parameters k,Nk,N, an mm-by-NN measurement matrix, Φ\Phi, and a decoding algorithm, D\mathcal{D}. Given a vector, xx, the system approximates xx by x^=D(Φx)\widehat x =\mathcal{D}(\Phi x), which must satisfy x^x2Cxxk2\| \widehat x - x\|_2\le C \|x - x_k\|_2, where xkx_k denotes the optimal kk-term approximation to xx. For each vector xx, the system must succeed with probability at least 3/4. Among the goals in designing such systems are minimizing the number mm of measurements and the runtime of the decoding algorithm, D\mathcal{D}. In this paper, we give a system with m=O(klog(N/k))m=O(k \log(N/k)) measurements--matching a lower bound, up to a constant factor--and decoding time O(klogcN)O(k\log^c N), matching a lower bound up to log(N)\log(N) factors. We also consider the encode time (i.e., the time to multiply Φ\Phi by xx), the time to update measurements (i.e., the time to multiply Φ\Phi by a 1-sparse xx), and the robustness and stability of the algorithm (adding noise before and after the measurements). Our encode and update times are optimal up to log(N)\log(N) factors
    corecore