207 research outputs found
Quantitative Determination of Enhanced and Suppressed Transmission through Subwavelength Slit Arrays in Silver Films
Measurement of the transmitted intensity from a coherent monomode light
source through a series of subwavelength slit arrays in Ag films, with varying
array pitch and number of slits, demonstrate enhancement (suppression) by as
much as a factor of 6 (9) when normalized to that of an isolated slit.
Pronounced minima in the transmitted intensity were observed at array pitches
corresponding to lambda_SPP, 2lambda_SPP, and 3lambda_SPP where lambda_SPP is
the wavelength of the surface plasmon polariton (SPP). Increasing the number of
slits to more than four does not increase appreciably the per-slit transmission
intensity. These results are consistent with a model for interference between
SPPs and the incident wave that fits well the measured transmitted intensity
profile.Comment: Figure 4 update
All-optical atom surface traps implemented with one-dimensional planar diffractive microstructures
We characterize the loading, containment and optical properties of
all-optical atom traps implemented by diffractive focusing with one-dimensional
(1D) microstructures milled on gold films. These on-chip Fresnel lenses with
focal lengths of the order of a few hundred microns produce
optical-gradient-dipole traps. Cold atoms are loaded from a mirror
magneto-optical trap (MMOT) centered a few hundred microns above the gold
mirror surface. Details of loading optimization are reported and perspectives
for future development of these structures are discussed.Comment: 7 pages, 15 figure
Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy
We use cathodoluminescence imaging spectroscopy to excite surface plasmon polaritons and measure their decay length on single crystal and polycrystalline gold surfaces. The surface plasmon polaritons are excited on the gold surface by a nanoscale focused electron beam and are coupled into free space radiation by gratings fabricated into the surface. By scanning the electron beam on a line perpendicular to the gratings, the propagation length is determined. Data for single-crystal gold are in agreement with calculations based on dielectric constants. For polycrystalline films, grain boundary scattering is identified as additional loss mechanism, with a scattering coefficient SG=0.2%
Surface-wave interferometry on single subwavelength slit-groove structures fabricated on gold films
We apply the technique of far-field interferometry to measure the properties
of surface waves generated by two-dimensional (2D) single subwavelength
slit-groove structures on gold films. The effective surface index of refraction
measured for the surface wave propagating over a distance of more than 12
microns is determined to be 1.016 with a measurement uncertainty of 0.004, to
within experimental uncertainty of the expected bound surface plasmon-polariton
(SPP) value for a Au/Air interface of 1.018. We compare these measurements to
finite-difference-time-domain (FDTD) numerical simulations of the optical field
transmission through these devices. We find excellent agreement between the
measurements and the simulations for the surface index of refraction. The
measurements also show that the surface wave propagation parameter exhibits
transient behavior close to the slit, evolving smoothly from greater values
asymptotically toward the value expected for the SPP over the first 2-3 microns
of slit-groove distance. This behavior is confirmed by the FDTD simulations
Local density of states, spectrum, and far-field interference of surface plasmon polaritons probed by cathodoluminescence
The surface plasmon polariton (SPP) field intensity in the vicinity of gratings patterned in an otherwise planar gold surface is spatially resolved using cathodoluminescence (CL). A detailed theoretical analysis is presented that successfully explains the measured CL signal based upon interference of transition radiation directly generated by electron impact and SPPs launched by the electron and outcoupled by the grating. The measured spectral dependence of the SPP yield per incoming electron is in excellent agreement with rigorous electromagnetic calculations. The CL emission is shown to be similar to that of a dipole oriented perpendicular to the surface and situated at the point of electron impact, which allows us to establish a solid connection between the CL signal and the photonic local density of states associated to the SPPs
Surface wave generation and propagation on metallic subwavelength structures measured by far-field interferometry
Transmission spectra of metallic films or membranes perforated by arrays of
subwavelength slits or holes have been widely interpreted as resonance
absorption by surface plasmon polaritons (SPPs). Alternative interpretations
involving evanescent waves diffracted on the surface have also been proposed.
These two approaches lead to divergent predictions for some surface wave
properties. Using far-field interferometry, we have carried out a series of
measurements on elementary one-dimensional (1-D) subwavelength structures with
the aim of testing key properties of the surface waves and comparing them to
predictions of these two points of view
Submicrometer Dimple Array Based Interference Color Field Displays and Sensors
We report a technique for producing bright color fields over extended surfaces, via optical interference, with the capability of producing arbitrary visible colors in areas as small as 100 μm^2. Periodic arrays of submicrometer dimples are fabricated on reflective silicon surfaces, and diffraction-induced mutual interference of light reflected from the upper and lower levels of the dimpled surfaces generates color depending on wavelength scaled dimple depth and periodicity. Colors of the entire visible spectrum can be generated by dimple arrays with different dimple depths. The topological permeability of such an open surface readily allows infusion of liquids, with different refractive indices, for color switching and detection. These easy to fabricate, scalable, robust devices, on solid as well as flexible supports, could find a wide range of applications such as cheap high-resolution printable dye/pigment-free displays, reliable index-of-refraction sensors with color readout for liquids, and lab-on-chip liquid flow monitors
Optical response of nanostructured surfaces: experimental investigation of the composite diffracted evanescent wave model
The past decade has seen a rapidly developing interest in the response of subwavelength-structured surfaces to optical excitation. Many studies have interpreted the optical coupling to the surface in terms of surface plasmon polaritons, but recently another approach involving diffraction of surface evanescent waves, the Composite Diffractive Evanescent Wave (CDEW) model has been proposed. We present here a series of measurements on very simple one-dimensional (1-D) subwavelength structures with the aim of testing key properties of the surface waves predicted by the CDEW model
- …