155 research outputs found

    Reconciliation between operational taxonomic units and species boundaries

    Get PDF
    The development of high-throughput sequencing technologies has revolutionised the field of microbial ecology via 16S rRNA gene amplicon sequencing approaches. Clustering those amplicon sequencing reads into operational taxonomic units (OTUs) using a fixed cut-off is a commonly used approach to estimate microbial diversity. A 97% threshold was chosen with the intended purpose that resulting OTUs could be interpreted as a proxy for bacterial species. Our results show that the robustness of such a generalised cut-off is questionable when applied to short amplicons only covering one or two variable regions of the 16S rRNA gene. It will lead to biases in diversity metrics and makes it hard to compare results obtained with amplicons derived with different primer sets. The method introduced within this work takes into account the differential evolutional rates of taxonomic lineages in order to define a dynamic and taxonomic-dependent OTU clustering cut-off score. For a taxonomic family consisting of species showing high evolutionary conservation in the amplified variable regions, the cut-off will be more stringent than 97%. By taking into consideration the amplified variable regions and the taxonomic family when defining this cut-off, such a threshold will lead to more robust results and closer correspondence between OTUs and species. This approach has been implemented in a publicly available software package called DynamiC

    Food supplements to mitigate detrimental effects of pelvic radiotherapy

    Get PDF
    Pelvic radiotherapy has been frequently reported to cause acute and late onset gastrointestinal (GI) toxicities associated with significant morbidity and mortality. Although the underlying mechanisms of pelvic radiation-induced GI toxicity are poorly understood, they are known to involve a complex interplay between all cell types comprising the intestinal wall. Furthermore, increasing evidence states that the human gut microbiome plays a role in the development of radiation-induced health damaging effects. Gut microbial dysbiosis leads to diarrhea and fatigue in half of the patients. As a result, reinforcement of the microbiome has become a hot topic in various medical disciplines. To counteract GI radiotoxicities, apart from traditional pharmacological compounds, adjuvant therapies are being developed including food supplements like vitamins, prebiotics, and probiotics. Despite the easy, cheap, safe, and feasible approach to protect patients against acute radiation-induced toxicity, clinical trials have yielded contradictory results. In this review, a detailed overview is given of the various clinical, intestinal manifestations after pelvic irradiation as well as the role of the gut microbiome herein. Furthermore, whilst discussing possible strategies to prevent these symptoms, food supplements are presented as auspicious, prophylactic, and therapeutic options to mitigate acute pelvic radiation-induced GI injury by exploring their molecular mechanisms of action

    The impact of space flight on survival and interaction of Cupriavidus metallidurans CH34 with basalt, a volcanic moon analog rock

    Get PDF
    Microbe-mineral interactions have become of interest for space exploration as microorganisms could be used to biomine from extra-terrestrial material and extract elements useful as micronutrients in life support systems. This research aimed to identify the impact of space flight on the long-term survival of Cupriavidus metallidurans CH34 in mineral water and the interaction with basalt, a lunar-type rock in preparation for the ESA spaceflight experiment, BIOROCK. Therefore, C. metallidurans CH34 cells were suspended in mineral water supplemented with or without crushed basalt and send for 3 months on board the Russian FOTON-M4 capsule. Long-term storage had a significant impact on cell physiology and energy status (by flow cytometry analysis, plate count and intracellular ATP measurements) as 60% of cells stored on ground lost their cell membrane potential, only 17% were still active, average ATP levels per cell were significantly lower and cultivability dropped to 1%. The cells stored in the presence of basalt and exposed to space flight conditions during storage however showed less dramatic changes in physiology, with only 16% of the cells lost their cell membrane potential and 24% were still active, leading to a higher cultivability (50%) and indicating a general positive effect of basalt and space flight on survival. Microbe-mineral interactions and biofilm formation was altered by spaceflight as less biofilm was formed on the basalt during flight conditions. Leaching from basalt also changed (measured with ICP-OES), showing that cells release more copper from basalt and the presence of cells also impacted iron and magnesium concentration irrespective of the presence of basalt. The flight conditions thus could counteract some of the detrimental effects observed after the 3 month storage conditions

    Gene expansion and positive selection as bacterial adaptations to oligotrophic conditions

    Get PDF
    We examined the genomic adaptations of prevalent bacterial taxa in a highly nutrient- and ion-depleted freshwater environment located in the secondary cooling water system of a nuclear research reactor. Using genome-centric metagenomics, we found that none of the prevalent bacterial taxa were related to typical freshwater bacterial lineages. We also did not identify strong signatures of genome streamlining, which has been shown to be one of the ecoevolutionary forces shaping the genome characteristics of bacterial taxa in nutrient-depleted environments. Instead, focusing on the dominant taxon, a novel Ramlibacter sp. which we propose to name Ramlibacter aquaticus, we detected extensive positive selection on genes involved in phosphorus and carbon scavenging pathways. These genes were involved in the high-affinity phosphate uptake and storage into polyphosphate granules, metabolism of nitrogen-rich organic matter, and carbon/energy storage into polyhydroxyalkanoate. In parallel, comparative genomics revealed a high number of paralogs and an accessory genome significantly enriched in environmental sensing pathways (i.e., chemotaxis and motility), suggesting extensive gene expansions in R. aquaticus. The type strain of R. aquaticus (LMG 30558(T)) displayed optimal growth kinetics and productivity at low nutrient concentrations, as well as substantial cell size plasticity. Our findings with R. aquaticus LMG 30558(T) demonstrate that positive selection and gene expansions may represent successful adaptive strategies to oligotrophic environments that preserve high growth rates and cellular productivity. IMPORTANCE By combining a genome-centric metagenomic approach with a culture-based approach, we investigated the genomic adaptations of prevalent populations in an engineered oligotrophic freshwater system. We found evidence for widespread positive selection on genes involved in phosphorus and carbon scavenging pathways and for gene expansions in motility and environmental sensing to be important genomic adaptations of the abundant taxon in this system. In addition, microscopic and flow cytometric analysis of the first freshwater representative of this population (Ramlibacter aquaticus LMG 30558(T)) demonstrated phenotypic plasticity, possibly due to the metabolic versatility granted by its larger genome, to be a strategy to cope with nutrient limitation. Our study clearly demonstrates the need for the use of a broad set of genomic tools combined with culture-based physiological characterization assays to investigate and validate genomic adaptations

    Variation in genomic islands contribute to genome plasticity in cupriavidus metallidurans

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Different <it>Cupriavidus metallidurans </it>strains isolated from metal-contaminated and other anthropogenic environments were genotypically and phenotypically compared with <it>C. metallidurans </it>type strain CH34. The latter is well-studied for its resistance to a wide range of metals, which is carried for a substantial part by its two megaplasmids pMOL28 and pMOL30.</p> <p>Results</p> <p>Comparative genomic hybridization (CGH) indicated that the extensive arsenal of determinants involved in metal resistance was well conserved among the different <it>C. metallidurans </it>strains. Contrary, the mobile genetic elements identified in type strain CH34 were not present in all strains but clearly showed a pattern, although, not directly related to a particular biotope nor location (geographical). One group of strains carried almost all mobile genetic elements, while these were much less abundant in the second group. This occurrence was also reflected in their ability to degrade toluene and grow autotrophically on hydrogen gas and carbon dioxide, which are two traits linked to separate genomic islands of the Tn<it>4371</it>-family. In addition, the clear pattern of genomic islands distribution allowed to identify new putative genomic islands on chromosome 1 and 2 of <it>C. metallidurans </it>CH34.</p> <p>Conclusions</p> <p>Metal resistance determinants are shared by all <it>C. metallidurans </it>strains and their occurrence is apparently irrespective of the strain's isolation type and place. <it>Cupriavidus metallidurans </it>strains do display substantial differences in the diversity and size of their mobile gene pool, which may be extensive in some (including the type strain) while marginal in others.</p

    Assessment of batch culture conditions for cyanobacterial propagation for a bioreactor in space

    Get PDF
    One important point in human space exploration is the reliable air, water and food production for the space crew, less dependent from cargo supply. Bioregenerative life support systems aim to overcome this challenge. The life support program MELiSSA of the European Space Agency uses the cyanobacterium Limnospira indica for air revitalization and food production. In the Space flight experiments ArtEMISS-B and -C, L. indica is tested on the International Space Station. In this study we elucidate which conditions are most favorable for cell propagation from inoculum to a full culture in space to enable a high final biomass concentration, with high pigment composition for an efficient bioprocess. We found that lower light intensities (36–75 ”mol photons m-2 s-1) show higher maximum biomass densities and higher pigment contents than cultures grown above 100 ”mol photons m-2 s-1. 36 Όmol photons m-2 s-1 resulted in maximum biomass concentrations of 3.36 ± 0.15 g L-1 (23 °C), while cultures grown at 140 ”mol photons m-2 s-1 only achieved concentrations of 0.82 ± 0.10 g L-1 (25°C) (−75.8%). Colder temperatures (21°C–25°C) showed a negative effect on the pigment content. At 36 ”mol photons m-2 s-1, a temperature of 30°C gave a phycocyanin concentration of 0.122 ± 0.014 g g DW-1 and 23°C resulted in 0.030 ± 0.003 g g DW-1 (−75.4%). In conclusion, a low light intensity (36–80 ”mol photons m-2 s-1) in combination with warm temperature (30°C–34°C) is optimal to obtain cultures with high pigment contents and high biomass concentrations in a batch culture

    Reactivation of Microbial Strains and Synthetic Communities After a Spaceflight to the International Space Station: Corroborating the Feasibility of Essential Conversions in the MELiSSA Loop

    Get PDF
    To sustain human deep space exploration or extra-terrestrial settlements where no resupply from the Earth or other planets is possible, technologies for in situ food production, water, air, and waste recovery need to be developed. The Micro-Ecological Life Support System Alternative (MELiSSA) is such a Regenerative Life Support System (RLSS) and it builds on several bacterial bioprocesses. However, alterations in gravity, temperature, and radiation associated with the space environment can affect survival and functionality of the microorganisms. In this study, representative strains of different carbon and nitrogen metabolisms with application in the MELiSSA were selected for launch and Low Earth Orbit (LEO) exposure. An edible photoautotrophic strain (Arthrospira sp. PCC 8005), a photoheterotrophic strain (Rhodospirillum rubrum S1H), a ureolytic heterotrophic strain (Cupriavidus pinatubonensis 1245), and combinations of C. pinatubonensis 1245 and autotrophic ammonia and nitrite oxidizing strains (Nitrosomonas europaea ATCC19718, Nitrosomonas ureae Nm10, and Nitrobacter winogradskyi Nb255) were sent to the International Space Station (ISS) for 7 days. There, the samples were exposed to 2.8 mGy, a dose 140 times higher than on the Earth, and a temperature of 22 degrees C +/- 1 degrees C. On return to the Earth, the cultures were reactivated and their growth and activity were compared with terrestrial controls stored under refrigerated (5 degrees C +/- 2 degrees C) or room temperature (22 degrees C +/- 1 degrees C and 21 degrees C +/- 0 degrees C) conditions. Overall, no difference was observed between terrestrial and ISS samples. Most cultures presented lower cell viability after the test, regardless of the type of exposure, indicating a harsher effect of the storage and sample preparation than the spaceflight itself. Postmission analysis revealed the successful survival and proliferation of all cultures except for Arthrospira, which suffered from the premission depressurization test. These observations validate the possibility of launching, storing, and reactivating bacteria with essential functionalities for microbial bioprocesses in RLSS

    Soil microbial community structure and functionality changes in response to long-term metal and radionuclide pollution

    Get PDF
    Microbial communities are essential for a healthy soil ecosystem. Metals and radionuclides can exert a persistent pressure on the soil microbial community. However, little is known on the effect of long-term co-contamination of metals and radionuclides on the microbial community structure and functionality. We investigated the impact of historical discharges of the phosphate and nuclear industry on the microbial community in the Grote Nete river basin in Belgium. Eight locations were sampled along a transect to the river edge and one location further in the field. Chemical analysis demonstrated a metal and radionuclide contamination gradient and revealed a distinct clustering of the locations based on all metadata. Moreover, a relation between the chemical parameters and the bacterial community structure was demonstrated. Although no difference in biomass was observed between locations, cultivation-dependent experiments showed that communities from contaminated locations survived better on singular metals than communities from control locations. Furthermore, nitrification, a key soil ecosystem process seemed affected in contaminated locations when combining metadata with microbial profiling. These results indicate that long-term metal and radionuclide pollution impacts the microbial community structure and functionality and provides important fundamental insights into microbial community dynamics in co-metal-radionuclide contaminated sites
    • 

    corecore