9 research outputs found

    Self-sealing cementitious materials by using water-swelling rubber particles

    No full text
    Water ingress into cracked concrete structures is a serious problem, as it can cause leakage and reinforcement corrosion and thus reduce functionality and safety of the structures. In this study, the application of water-swelling rubber particles for providing the cracked concrete a self-sealing function was developed. The feasibility of applying water-swelling rubber particles and the influence of incorporating water-swelling rubber particles on the mechanical properties of concrete was investigated. The self-sealing efficiency of water-swelling rubber particles with different content and particle size was quantified through a permeability test. The sealing effect of the water swelling rubber particles was monitored by X-ray computed tomography. The experimental results show that, by using 6% of these water swelling rubber particles as a replacement of aggregates in concrete, up to 64% and 61% decrease of water permeability was realized for 0.7 mm and 1.0 mm cracks. Furthermore, when the concrete cracks, the water swelling rubber particles can act as a crack bridging filler, preventing the crack from fully separating the specimens in two pieces.Materials and Environmen

    Butyrate Protects against Clostridium difficile Infection by Regulating Bile Acid Metabolism

    No full text
    ABSTRACT Clostridium difficile infection (CDI) is caused by a prevalent nosocomial enteric pathogen, leading to high morbidity and mortality. CDI recurrence after antibiotic treatment is high; therefore, it is necessary to develop novel therapeutics against this enteric pathogen. Butyrate is used to treat many diseases because it provides energy, has anti-inflammatory properties, and maintains intestinal barrier function. An anti-CDI effect for butyrate has been reported; however, the specific mechanism remains elusive. This study aimed to explore the potential role and mechanism of butyrate in the treatment of CDI. Using a CDI mouse model, we found that butyrate significantly inhibited CDI development by regulating bile acid metabolism. Dysregulation of fecal bile acid was significantly higher, and levels of short-chain fatty acids were significantly lower in patients with CDI than those in controls. In CDI mice, butyrate exhibited a protective role by enhancing barrier protection, exerting anti-inflammatory effects, and regulating bile acid metabolism. Butyrate treatment also regulated the production of bile salt hydrolase (BSH) flora and activated farnesoid X receptor (FXR), and its therapeutic effects were reduced in CDI mice treated with BSH or FXR inhibitors. Thus, butyrate treatment may serve as a novel therapeutic approach for patients with CDI. IMPORTANCE Here, we show that levels of fecal short-chain fatty acids (SCFAs), particularly butyrate, are reduced, and normal colon structure is damaged in patients with CDI compared with those in healthy individuals. Bile acid (BA) metabolic disorder in patients with CDI is characterized by increased primary BA levels and decreased secondary BAs. In mice, butyrate alters BA metabolism in CDI and may play a vital role in CDI treatment by promoting secondary BA metabolism. Lastly, butyrate-mediated therapeutic effects in CDI require FXR. Our findings demonstrate that butyrate treatment significantly decreases the severity of CDI-induced colitis in mice and affects BA metabolism and FXR activation, which provides a potential alternative treatment for CDI

    Dual-Link Synchronous Acquisition and Transmission System for Cabled Seafloor Earthquake Observatory

    No full text
    Seafloor observatories play a crucial role in acquiring continuous and precise submarine monitoring data, thereby holding significant implications for advancing major scientific advancements in marine science, particularly in the field of seafloor earthquake observation. This work mainly builds a dual-link observation system designed for observing seismic information on the seafloor based on a Zynq7000 system-on-chip and time synchronization module. The system is based on Zynq7000 SoC(MILIANKE; Changzhou, China) and AD7768(Analog Devices, Inc.; Norwood, MA, USA) to achieve eight-channel data (24 bit) synchronous acquisition, and the robustness of the system is improved by upgrading the link to full-duplex transmission and adding node data self-storage function. The P88 1588 PTP time synchronization single board(CoolShark; Beijing, China) is used to provide PPS (Pulse per second) signals for the system to realize microsecond timestamps to support subsequent seismic data inversion. An upper computer system based on the Qt framework is also developed to monitor the network condition in real time while visualizing the data transmission. For the acquisition of seismic signals, we employed triaxial seismic sensors. Additionally, a temperature and humidity monitoring module, along with an attitude detection module, was designed to enable real-time monitoring of the nodes. These modules not only facilitate the real-time monitoring of the nodes but also contribute to seismic data inversion. The experimental results indicate that the system provides a good synchronization of data acquisition, high accuracy, and reliability of inter-node transmission, which has good application prospects

    Micromechanical properties of a new polymeric microcapsule for self-healing cementitious materials

    No full text
    Self-healing cementitious materials containing a microencapsulated healing agent are appealing due to their great application potential in improving the serviceability and durability of concrete structures. In this study, poly(phenol-formaldehyde) (PF) microcapsules that aim to provide a self-healing function for cementitious materials were prepared by an in situ polymerization reaction. Size gradation of the synthesized microcapsules was achieved through a series of sieving processes. The shell thickness and the diameter of single microcapsules was accurately measured under environmental scanning electron microscopy (ESEM). The relationship between the physical properties of the synthesized microcapsules and their micromechanical properties were investigated using nanoindentation. The results of the mechanical tests show that, with the increase of the mean size of microcapsules and the decrease of shell thickness, the mechanical force required to trigger the self-healing function of microcapsules increased correspondingly from 68.5 ± 41.6 mN to 198.5 ± 31.6 mN, featuring a multi-sensitive trigger function. Finally, the rupture behavior and crack surface of cement paste with embedded microcapsules were observed and analyzed using X-ray computed tomography (XCT). The synthesized PF microcapsules may find potential application in self-healing cementitious materials.Materials and Environmen

    Experimental Investigation of Chloride Uptake Performances of Hydrocalumite-Like Ca-Al LDHs with Different Microstructures

    No full text
    In this study, hydrocalumite-like Ca2Al-NO3− layered double hydroxides (Ca-Al LDHs) with different microstructures were synthesized. The crystalline properties, structure composition, morphology and particle size distribution of the Ca-Al LDH (CAL) samples were illustrated. To obtain the chloride uptake performances of CAL, the influences of contact time, initial concentration of Cl−, pH of reaction solution and coexistence anions on the chloride uptake were examined systematically. Compared to the CAL samples obtained at a higher aging temperature, CAL synthesized at 60 °C demonstrated the minimum average particle size (6.148 μm) and the best Cl− adsorption capacity (211.324 mg/g). Based on the test results, the main adsorption mechanism of chloride ion on CAL was recognized as an interlayer anion exchanging reaction other than the dissolution-precipitate mode. With the increase in the pH value of reaction solution from 7 to 13, it was found that the amount of chloride ion adsorbed by CAL increased slightly, and the solution could remain at relatively high pH value even after the adsorption. The presence of CO32− and SO42− reduced the adsorption capacity of CAL dramatically as compared with OH− due to the destruction of layered structure and the formation of precipitates (CaCO3 or CaSO4). The interference sequence of the investigated anions on the chloride uptake of CAL was SO42−, CO32− and OH−, and the order of interlayer anionic affinity was Cl− > OH− > NO3−. The results illustrated that the synthesized CAL could be used as a promising chloride ion adsorbent for the corrosion inhibition of reinforcement embedded cement-based materials

    Prehydration of calcium sulfoaluminate (CSA) clinker at different relative humidities

    No full text
    The use of CSA cement in practice has been hindered by its unstable performance and short shelf-life caused by the prehydration of CSA clinker. In this study, the effect of ambient humidity on the prehydration rate and process of CSA clinker was investigated. The prehydration degree, ageing progress, and the dynamic change of mineral composition of CSA clinker exposed to five different relative humidities (ranging from 23% to 98%) for up to 180 days were studied. Experiments revealed that the ambient humidity of 60% RH can be considered a threshold value for storage of CSA clinker. Exposure of CSA clinker to RH higher than 60% will not only result in a significant decrease of hydraulic reactivity, but also in agglomeration of the clinker. Although the exposure of CSA clinker to RH lower than 60% has little effect on the hydraulic reactivity, the main hydration peak was found to be slightly delayed with the increase of RH.Accepted Author ManuscriptMaterials and Environmen

    Effect of particle size distribution on the pre-hydration, hydration kinetics, and mechanical properties of calcium sulfoaluminate cement

    No full text
    The particle size distribution (PSD) has a significant influence on the fresh and final properties of cement and its derived products. In this paper, CSA cements with three different mean diameters (D50), ranging from 6.04 to 26.62 μm were prepared by milling. The pre-hydration behavior was quantitatively analyzed, including the degree of pre-hydration, the dynamic change of mineral assemblage and the morphology of the prepared CSA cement exposed to 57%, 75% and 97% relative humidities (RHs) for up to 90 days. Hydration kinetics, porosity, and compressive strength of the cement paste made with fresh and pre-hydrated CSA cement with different PSD were also characterized. The results show that pre-hydration of CSA cement at RH higher than 75% has detrimental effects on the hydraulic activity and strength gain of CSA cement. However, coarser CSA cement (D50 = 26.62 μm) does not only show better resistance to pre-hydration, but also higher compressive strength and lower porosity.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Materials and Environmen
    corecore