346 research outputs found

    Dynamics of the particle - hole pair creation in graphene

    Full text link
    The process of coherent creation of particle - hole excitations by an electric field in graphene is quantitatively described. We calculate the evolution of current density, number of pairs and energy after switching on the electric field. In particular, it leads to a dynamical visualization of the universal finite resistivity without dissipation in pure graphene. We show that the DC conductivity of pure graphene is rather πe22h\frac{\pi e^{2}}{2 h} than the often cited value of 4e2πh\frac{4 e^{2}}{\pi h}. This value coincides with the AC conductivity calculated and measured recently at optical frequencies. The effect of temperature and random chemical potential (charge puddles) are considered and explain the recent experiment on suspended graphene. A possibility of Bloch oscillations is discussed within the tight binding model.Comment: 4 pages, 2 figure

    Systems engineering for very large systems

    Get PDF
    Very large integrated systems have always posed special problems for engineers. Whether they are power generation systems, computer networks or space vehicles, whenever there are multiple interfaces, complex technologies or just demanding customers, the challenges are unique. 'Systems engineering' has evolved as a discipline in order to meet these challenges by providing a structured, top-down design and development methodology for the engineer. This paper attempts to define the general class of problems requiring the complete systems engineering treatment and to show how systems engineering can be utilized to improve customer satisfaction and profit ability. Specifically, this work will focus on a design methodology for the largest of systems, not necessarily in terms of physical size, but in terms of complexity and interconnectivity

    Signature of Schwinger's pair creation rate via radiation generated in graphene by strong electric current

    Full text link
    Electron - hole pairs are copuously created by an applied electric field near the Dirac point in graphene or similar 2D electronic systems. It was shown recently that for sufficiently large electric fields and ballistic times the I-V characteristics become strongly nonlinear due to Schwinger's pair creation. Since there is no energy gap the radiation from the pairs' annihilation is enhanced. The spectrum of radiation is calculated. The angular and polarization dependence of the emitted photons with respect to the graphene sheet is quite distinctive. For very large currents the recombination rate becomes so large that it leads to the second Ohmic regime due to radiation friction.Comment: 9 pages, 7 figure

    Discrimination of the Healthy and Sick Cardiac Autonomic Nervous System by a New Wavelet Analysis of Heartbeat Intervals

    Get PDF
    We demonstrate that it is possible to distinguish with a complete certainty between healthy subjects and patients with various dysfunctions of the cardiac nervous system by way of multiresolutional wavelet transform of RR intervals. We repeated the study of Thurner et al on different ensemble of subjects. We show that reconstructed series using a filter which discards wavelet coefficients related with higher scales enables one to classify individuals for which the method otherwise is inconclusive. We suggest a delimiting diagnostic value of the standard deviation of the filtered, reconstructed RR interval time series in the range of 0.035\sim 0.035 (for the above mentioned filter), below which individuals are at risk.Comment: 5 latex pages (including 6 figures). Accepted in Fractal

    Ballistic transport, chiral anomaly and emergence of the neutral electron - hole plasma in graphene

    Full text link
    The process of coherent creation of particle - hole excitations by an electric field in graphene is quantitatively described using a dynamic "first quantized" approach. We calculate the evolution of current density, number of pairs and energy in ballistic regime using the tight binding model. The series in electric field strength EE up to third order in both DC and AC are calculated. We show how the physics far from the two Dirac points enters various physical quantities in linear response and how it is related to the chiral anomaly. The third harmonic generation and the imaginary part of conductivity are obtained. It is shown that at certain time scale tnlE1/2t_{nl}\propto E^{-1/2} the physical behaviour dramatically changes and the perturbation theory breaks down. Beyond the linear response physics is explored using an exact solution of the first quantized equations. While for small electric fields the I-V curve is linear characterized by the universal minimal resistivity σ=π/2(e2/h)\sigma =\pi /2(e^{2}/h)%, at t>tnlt>t_{nl} the conductivity grows fast. The copious pair creation (with rate E3/2E^{3/2}), analogous to Schwinger's electron - positron pair creation from vacuum in QED, leads to creation of the electron - hole plasma at ballistic times of order tnlt_{nl}. This process is terminated by a relaxational recombination.Comment: 15 pages, 5 figures

    ‘No memory, no desire’: psychoanalysis in Brazil during repressive times

    Get PDF
    Until recently, the growth and significance of Brazilian psychoanalysis has been neglected in histories of psychoanalysis. Not only is this history long and rich in its professional and cultural dimensions, but there was an especially important ‘event’ – the so-called ‘Cabernite-Lobo affair’ – that took place during the period of the military dictatorship, which can be seen as dramatising some of the issues concerning the erasure of memory in psychoanalysis, especially in connection with political difficulties. In this paper, we provide an outline of the origins and dissemination of psychoanalysis in Brazil before looking again at the Cabernite-Lobo affair in order to examine in a situated way how psychoanalysis engages with political extremism, and particularly to explore the consequences of an unthinking generalisation of the idea of ‘neutrality’ from the consulting room to the institutional setting. We draw especially on Brazilian papers in Portuguese, which have not been accessible in the English-language psychoanalytic literature

    IL-12, IL-6 and IFN-gamma production by lymphocytes of pregnant women with rheumatoid arthritis remission during pregnancy.

    Get PDF
    BACKGROUND: Rheumatoid arthritis (RA) is an autoimmune disease with progressive activity. The RA remission was observed in women during pregnancy, but the mechanism responsible for remission is hypothetical only and concerns mechanisms of immune regulation such as lymphocyte subpopulations and interleukin production. AIMS: The lymphocyte subpopulations and interleukin production in vitro in a group of healthy non-pregnant women, healthy pregnant women and pregnant women suffering from RA may help towards a better understanding of regulation of the immune processes. METHODS: The investigations were performed in trimester III--2 days after delivery and 6 weeks after delivery. Peripheral blood lymphocytes were isolated on Gradisol gradient and analysed immediately or after having been cultured for 72 hours in RPMI medium supplemented with 10% FCS. The cultures were terminated after 72 h, supernatants stored at -72 degrees C for interleukin evaluation. The concentrations of IFN-gamma, IL-2, IL-6, IL-12, TNF-alpha and its soluble receptors R-I, R-II were estimated in non-stimulated and PHA (Sigma, 5 microg/ml) stimulated culture supernatants using ELISA Endogen kits according to the manufacturer's instructions. RESULTS: The general pattern of T cell subpopulation distribution was similar in all analysed groups. Decreased IFN-gamma, IL-12 and increased IL-6 production by lymphocytes after PHA stimulation was found in trimester III in pregnant women with RA as compared to healthy pregnant woman. CONCLUSION: The obtained results suggest that in pregnant women with RA the TH1 cell response predominates, contrary to healthy pregnant women with TH2 type functional response. These phenomena were not observed after delivery

    Reduced engagement with social stimuli in 6-month-old infants with later Autism Spectrum Disorder: a longitudinal prospective study of infants at high familial risk

    Get PDF
    Background: Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder that affects more than 1% of the population, and close to 20% of prospectively studied infants with an older sibling with ASD. Although significant progress has been made in characterizing the emergence of behavioral symptoms of ASD, far less is known about the underlying disruptions to early learning. Recent models suggest that core aspects of the causal path to ASD may only be apparent in early infancy. Here, we investigated social attention in 6- and 12-month-old infants who did and did not meet criteria for ASD at 24 months using both cognitive and electrophysiological methods. We hypothesized that a reduction in attention engagement to faces would be associated with later ASD. Methods: In a prospective longitudinal design, we used measures of both visual attention (habituation) and brain function (event-related potentials to faces and objects) at 6 and 12 months, and investigated the relationship to ASD outcome at 24 months. Results: High-risk infants who met criteria for ASD at 24 months showed shorter epochs of visual attention, faster but less prolonged neural activation to faces, and delayed sensitization responses (increases in looking) to faces at 6 months; these differences were less apparent at 12 months. These findings are consistent with disrupted engagement of sustained attention to social stimuli. Conclusions: These findings suggest that there may be fundamental early disruptions to attention engagement that may have cascading consequences for later social functioning
    corecore