62 research outputs found

    The placebo effect and its determinants in fibromyalgia: meta-analysis of randomized controlled trials

    Get PDF
    The aims of this study were to determine whether placebo treatment in randomised controlled trials (RCTs) is effective for fibromyalgia and to identify possible determinants of the magnitude of any such placebo effect. A systematic literature search was undertaken for RCTs in people with fibromyalgia that included a placebo and/or a no-treatment (observation only or waiting list) control group. Placebo effect size (ES) for pain and other outcomes was measured as the improvement of each outcome from baseline divided by the standard deviation of the change from baseline. This effect was compared with changes in the no-treatment control groups. Meta-analysis was undertaken to combine data from different studies. Subgroup analysis was conducted to identify possible determinants of the placebo ES. A total of 3912 studies were identified from the literature search. After scrutiny, 229 trials met the inclusion criteria. Participants who received placebo in the RCTs experienced significantly better improvements in pain, fatigue, sleep quality, physical function, and other main outcomes than those receiving no treatment. The ES of placebo for pain relief was clinically moderate (0.53, 95%CI 0.48 to 0.57). The ES increased with increasing strength of the active treatment, increasing participant age and higher baseline pain severity, but decreased in RCTS with more women and with longer duration of fibromyalgia. In addition, placebo treatment in RCTs is effective in fibromyalgia. A number of factors (expected strength of treatment, age, gender, disease duration) appear to influence the magnitude of the placebo effect in this condition

    Static Magnetic Field Exposure Reproduces Cellular Effects of the Parkinson's Disease Drug Candidate ZM241385

    Get PDF
    This study was inspired by coalescing evidence that magnetic therapy may be a viable treatment option for certain diseases. This premise is based on the ability of moderate strength fields (i.e., 0.1 to 1 Tesla) to alter the biophysical properties of lipid bilayers and in turn modulate cellular signaling pathways. In particular, previous results from our laboratory (Wang et al., BMC Genomics, 10, 356 (2009)) established that moderate strength static magnetic field (SMF) exposure altered cellular endpoints associated with neuronal function and differentiation. Building on this background, the current paper investigated SMF by focusing on the adenosine A(2A) receptor (A(2A)R) in the PC12 rat adrenal pheochromocytoma cell line that displays metabolic features of Parkinson's disease (PD).SMF reproduced several responses elicited by ZM241385, a selective A(2A)R antagonist, in PC12 cells including altered calcium flux, increased ATP levels, reduced cAMP levels, reduced nitric oxide production, reduced p44/42 MAPK phosphorylation, inhibited proliferation, and reduced iron uptake. SMF also counteracted several PD-relevant endpoints exacerbated by A(2A)R agonist CGS21680 in a manner similar to ZM241385; these include reduction of increased expression of A(2A)R, reversal of altered calcium efflux, dampening of increased adenosine production, reduction of enhanced proliferation and associated p44/42 MAPK phosphorylation, and inhibition of neurite outgrowth.When measured against multiple endpoints, SMF elicited qualitatively similar responses as ZM241385, a PD drug candidate. Provided that the in vitro results presented in this paper apply in vivo, SMF holds promise as an intriguing non-invasive approach to treat PD and potentially other neurological disorders

    Parkinson's Disease: Basic Pathomechanisms and a Clinical Overview

    Get PDF
    PD is a common and a debilitating degenerative movement disorder. The number of patients is increasing worldwide and as yet there is no cure for the disease. The majority of existing treatments target motor symptom control. Over the last two decades the impact of the genetic contribution to PD has been appreciated. Significant discoveries have been made, which have advanced our understanding of the pathophysiological and molecular basis of PD. In this chapter we outline current knowledge of the clinical aspects of PD and the basic mechanistic understanding

    Progress in gene therapy for neurological disorders

    Get PDF
    Diseases of the nervous system have devastating effects and are widely distributed among the population, being especially prevalent in the elderly. These diseases are often caused by inherited genetic mutations that result in abnormal nervous system development, neurodegeneration, or impaired neuronal function. Other causes of neurological diseases include genetic and epigenetic changes induced by environmental insults, injury, disease-related events or inflammatory processes. Standard medical and surgical practice has not proved effective in curing or treating these diseases, and appropriate pharmaceuticals do not exist or are insufficient to slow disease progression. Gene therapy is emerging as a powerful approach with potential to treat and even cure some of the most common diseases of the nervous system. Gene therapy for neurological diseases has been made possible through progress in understanding the underlying disease mechanisms, particularly those involving sensory neurons, and also by improvement of gene vector design, therapeutic gene selection, and methods of delivery. Progress in the field has renewed our optimism for gene therapy as a treatment modality that can be used by neurologists, ophthalmologists and neurosurgeons. In this Review, we describe the promising gene therapy strategies that have the potential to treat patients with neurological diseases and discuss prospects for future development of gene therapy

    Insulin-like growth factor-1 deficiency and metabolic syndrome

    Full text link

    Epidemiology and etiology of Parkinson’s disease: a review of the evidence

    Full text link
    • …
    corecore