18,916 research outputs found

    Proximity effect in Nb-Mo layered films: Transition temperature and critical current dependence on period

    Full text link
    The behavior of the transition temperature and critical current density for a Mo/Nb repeated bilayer system as a function of the number of periods was explored. The measured values of the transition temperature are compared to the theoretical predictions for the proximity effect in the dirty limit. We find that the transition temperature does not decrease as the number of periods increase. In addition, inductive critical current density measurements also show a scaling that indicates the superconductivity properties are not dependent on the number of bilayers.Comment: 13 pages, 6 figures, to be published Journal of Applied Physic

    CMB power spectrum parameter degeneracies in the era of precision cosmology

    Get PDF
    Cosmological parameter constraints from the CMB power spectra alone suffer several well-known degeneracies. These degeneracies can be broken by numerical artefacts and also a variety of physical effects that become quantitatively important with high-accuracy data e.g. from the Planck satellite. We study degeneracies in models with flat and non-flat spatial sections, non-trivial dark energy and massive neutrinos, and investigate the importance of various physical degeneracy-breaking effects. We test the CAMB power spectrum code for numerical accuracy, and demonstrate that the numerical calculations are accurate enough for degeneracies to be broken mainly by true physical effects (the integrated Sachs-Wolfe effect, CMB lensing and geometrical and other effects through recombination) rather than numerical artefacts. We quantify the impact of CMB lensing on the power spectra, which inevitably provides degeneracy-breaking information even without using information in the non-Gaussianity. Finally we check the numerical accuracy of sample-based parameter constraints using CAMB and CosmoMC. In an appendix we document recent changes to CAMB's numerical treatment of massive neutrino perturbations, which are tested along with other recent improvements by our degeneracy exploration results.Comment: 27 pages, 28 figures. Latest CAMB version available from http://camb.info/. Reduced number of figures, plot legend corrected and minor edits to match published versio

    Can Modal Skepticism Defeat Humean Skepticism?

    Get PDF
    My topic is moderate modal skepticism in the spirit of Peter van Inwagen. Here understood, this is a conservative version of modal empiricism that severely limits the extent to which an ordinary agent can reasonably believe “exotic” possibility claims. I offer a novel argument in support of this brand of skepticism: modal skepticism grounds an attractive (and novel) reply to Humean skepticism. Thus, I propose that modal skepticism be accepted on the basis of its theoretical utility as a tool for dissolving philosophical paradox

    A deconvolution map-making method for experiments with circular scanning strategies

    Full text link
    Aims. To investigate the performance of a deconvolution map-making algorithm for an experiment with a circular scanning strategy, specifically in this case for the analysis of Planck data, and to quantify the effects of making maps using simplified approximations to the true beams. Methods. We present an implementation of a map-making algorithm which allows the combined treatment of temperature and polarisation data, and removal of instrumental effects, such as detector time constants and finite sampling intervals, as well as the deconvolution of arbitrarily complex beams from the maps. This method may be applied to any experiment with a circular scanning-strategy. Results. Low-resolution experiments were used to demonstrate the ability of this method to remove the effects of arbitrary beams from the maps and to demonstrate the effects on the maps of ignoring beam asymmetries. Additionally, results are presented of an analysis of a realistic full-scale simulated data-set for the Planck LFI 30 GHz channel. Conclusions. Our method successfully removes the effects of the beams from the maps, and although it is computationally expensive, the analysis of the Planck LFI data should be feasible with this approach.Comment: 14 pages, 14 figures, accepte

    Large deviations for ideal quantum systems

    Full text link
    We consider a general d-dimensional quantum system of non-interacting particles, with suitable statistics, in a very large (formally infinite) container. We prove that, in equilibrium, the fluctuations in the density of particles in a subdomain of the container are described by a large deviation function related to the pressure of the system. That is, untypical densities occur with a probability exponentially small in the volume of the subdomain, with the coefficient in the exponent given by the appropriate thermodynamic potential. Furthermore, small fluctuations satisfy the central limit theorem.Comment: 28 pages, LaTeX 2

    Proof of Bose-Einstein Condensation for Interacting Gases with a One-Particle Spectral Gap

    Full text link
    Using a specially tuned mean-field Bose gas as a reference system, we establish a positive lower bound on the condensate density for continuous Bose systems with superstable two-body interactions and a finite gap in the one-particle excitations spectrum, i.e. we prove for the first time standard homogeneous Bose-Einstein condensation for such interacting systems

    Illusions of gunk

    Get PDF
    The possibility of gunk has been used to argue against mereological nihilism. This paper explores two responses on the part of the microphysical mereological nihilist: (1) the contingency defence, which maintains that nihilism is true of the actual world; but that at other worlds, composition occurs; (2) the impossibility defence, which maintains that nihilism is necessary true, and so gunk worlds are impossible. The former is argued to be ultimately unstable; the latter faces the explanatorily burden of explaining the illusion that gunk is possible. It is argued that we can discharge this burden by focussing on the contingency of the microphysicalist aspect of microphysical mereological nihilism. The upshot is that gunk-based arguments against microphysical mereological nihilism can be resisted

    Solving the Cooling Flow Problem of Galaxy Clusters by Dark Matter Neutralino Annihilation

    Get PDF
    Recent X-ray observations revealed that strong cooling flow of intracluster gas is not present in galaxy clusters, even though predicted theoretically if there is no additional heating source. I show that relativistic particles produced by dark matter neutralino annihilation in cluster cores provide a sufficient heating source to suppress the cooling flow, under reasonable astrophysical circumstances including adiabatic growth of central density profile, with appropriate particle physics parameters for dark matter neutralinos. In contrast to other astrophysical heat sources such as AGNs, this process is a steady and stable feedback over cosmological time scales after turned on.Comment: 4 pages, no figure. Accepted to Phys. Rev. Lett. A few minor revisions and references adde

    Diffusion of hydrogen in crystalline silicon

    Full text link
    The coefficient of diffusion of hydrogen in crystalline silicon is calculated using tight-binding molecular dynamics. Our results are in good quantitative agreement with an earlier study by Panzarini and Colombo [Phys. Rev. Lett. 73, 1636 (1994)]. However, while our calculations indicate that long jumps dominate over single hops at high temperatures, no abrupt change in the diffusion coefficient can be observed with decreasing temperature. The (classical) Arrhenius diffusion parameters, as a consequence, should extrapolate to low temperatures.Comment: 4 pages, including 5 postscript figures; submitted to Phys. Rev. B Brief Repor

    Renormalisation-theoretic analysis of non-equilibrium phase transitions II: The effect of perturbations on rate coefficients in the Becker-Doring equations

    Full text link
    We study in detail the application of renormalisation theory to models of cluster aggregation and fragmentation of relevance to nucleation and growth processes. In particular, we investigate the Becker-Doring (BD) equations, originally formulated to describe and analyse non-equilibrium phase transitions, but more recently generalised to describe a wide range of physicochemical problems. We consider here rate coefficients which depend on the cluster size in a power-law fashion, but now perturbed by small amplitude random noise. Power-law rate coefficients arise naturally in the theory of surface-controlled nucleation and growth processes. The noisy perturbations on these rates reflect the effect of microscopic variations in such mean-field coefficients, thermal fluctuations and/or experimental uncertainties. In the present paper we generalise our earlier work that identified the nine classes into which all dynamical behaviour must fall by investigating how random perturbations of the rate coefficients influence the steady-state and kinetic behaviour of the coarse-grained, renormalised system. We are hence able to confirm the existence of a set of up to nine universality classes for such BD systems.Comment: 30 pages, to appear in J Phys A Math Ge
    • 

    corecore