38,527 research outputs found

    Vibration limiting of rotors by feedback control

    Get PDF
    Experimental findings of a three mass rotor with four channels of feedback control are reported. The channels are independently controllable with force being proportional to the velocity and/or instantaneous displacement from equilibrium of the shaft at the noncontacting probe locations (arranged in the vertical and horizontal attitudes near the support bearings). The findings suggest that automatic feedback control of rotors is feasible for limiting certain vibration levels. Control of one end of a rotor does afford some predictable vibration limiting of the rotor at the other end

    Diffusion of a liquid nanoparticle on a disordered substrate

    Full text link
    We perform molecular dynamic simulations of liquid nanoparticles deposited on a disordered substrate. The motion of the nanoparticle is characterised by a 'stick and roll' diffusive process. Long simulation times (μs\simeq \mu s), analysis of mean square displacements and stacking time distribution functions demonstrate that the nanoparticle undergoes a normal diffusion in spite of long sticking times. We propose a phenomenological model for the size and temperature dependence of the diffusion coefficient in which the activation energy scales as N1/3N^{1/3}.Comment: Accepted for publication in Phys. Rev.

    QUAGMIRE v1.3: a quasi-geostrophic model for investigating rotating fluids experiments

    Get PDF
    QUAGMIRE is a quasi-geostrophic numerical model for performing fast, high-resolution simulations of multi-layer rotating annulus laboratory experiments on a desktop personal computer. The model uses a hybrid finite-difference/spectral approach to numerically integrate the coupled nonlinear partial differential equations of motion in cylindrical geometry in each layer. Version 1.3 implements the special case of two fluid layers of equal resting depths. The flow is forced either by a differentially rotating lid, or by relaxation to specified streamfunction or potential vorticity fields, or both. Dissipation is achieved through Ekman layer pumping and suction at the horizontal boundaries, including the internal interface. The effects of weak interfacial tension are included, as well as the linear topographic beta-effect and the quadratic centripetal beta-effect. Stochastic forcing may optionally be activated, to represent approximately the effects of random unresolved features. A leapfrog time stepping scheme is used, with a Robert filter. Flows simulated by the model agree well with those observed in the corresponding laboratory experiments

    Color enhancement of landsat agricultural imagery: JPL LACIE image processing support task

    Get PDF
    Color enhancement techniques were applied to LACIE LANDSAT segments to determine if such enhancement can assist analysis in crop identification. The procedure involved increasing the color range by removing correlation between components. First, a principal component transformation was performed, followed by contrast enhancement to equalize component variances, followed by an inverse transformation to restore familiar color relationships. Filtering was applied to lower order components to reduce color speckle in the enhanced products. Use of single acquisition and multiple acquisition statistics to control the enhancement were compared, and the effects of normalization investigated. Evaluation is left to LACIE personnel

    Design and test of a magnetic thrust bearing

    Get PDF
    A magnetic thrust bearing can be employed to take thrust loads in rotating machinery. The design and construction of a prototype magnetic thrust bearing for a high load per weight application is described. The theory for the bearing is developed. Fixtures were designed and the bearing was tested for load capacity using a universal testing machine. Various shims were employed to have known gap thicknesses. A comparison of the theory and measured results is presented

    The effect of (Ti + Al): V ratio on the structure and oxidation behaviour of TiAlN/VN nano-scale multilayer coatings

    Get PDF
    Nano-scaled multilayered TiAlN/VN coatings have been grown on stainless steel and M2 high speed steel substrates at U-B = - 85 V in an industrial, four target, Hauzer HTC 1000 coater using combined cathodic steered arc etching/unbalanced magnetron sputtering. X-ray diffraction (XRD) has been used to investigate the effects of process parameters (Target Power) on texture evolution (using texture parameter T*), development of residual stress (sin(2) psi method) and nano-scale multilayer period. The composition of the coating was determined using energy dispersive X-ray analysis. The thermal behaviour of the coatings in air was studied using thermo-gravimetric analysis, XRD and scanning electron microscopy. The bi-layer period varied between 2.8 and 3.1 nm and in all cases a {1 1 0} texture developed with a maximum value T* = 4.9. The residual stress varied between -5.2 and -7.4 GPa. The onset of rapid oxidation occurred between 628 and 645 degreesC depending on the (Ti+Al):V ratio. After oxidation in air at 550 degreesC AlVO4, TiO2 and V2O5 Phases were identified by XRD with the AlVO4, TiO2 being the major phases. The formation of AlVO4 appears to disrupt the formation of Al2O3 which imparts oxidation resistance to TiAlN based coatings. Increasing the temperature to 600 and 640 degreesC led to a dramatic increase in the formation of V2O5 which was highly oriented (0 0 1) with a plate-like morphology. At 640 degreesC there was no evidence of the coating on XRD. Increasing the temperature to 670 degreesC led to further formation of AlVO4 and a dramatic reduction in V2O5. (C) 2003 Elsevier B.V. All rights reserved

    Microgravity vibration isolation: An optimal control law for the one-dimensional case

    Get PDF
    Certain experiments contemplated for space platforms must be isolated from the accelerations of the platforms. An optimal active control is developed for microgravity vibration isolation, using constant state feedback gains (identical to those obtained from the Linear Quadratic Regulator (LQR) approach) along with constant feedforward (preview) gains. The quadratic cost function for this control algorithm effectively weights external accelerations of the platform disturbances by a factor proportional to (1/omega)(exp 4). Low frequency accelerations (less than 50 Hz) are attenuated by greater than two orders of magnitude. The control relies on the absolute position and velocity feedback of the experiment and the absolute position and velocity feedforward of the platform, and generally derives the stability robustness characteristics guaranteed by the LQR approach to optimality. The method as derived is extendable to the case in which only the relative positions and velocities and the absolute accelerations of the experiment and space platform are available

    Microwave resonance of the reentrant insulating quantum Hall phases in the 1st excited Landau Level

    Full text link
    We present measurements of the real diagonal microwave conductivity of the reentrant insulating quantum Hall phases in the first excited Landau level at temperatures below 50 mK. A resonance is detected around filling factor ν=2.58\nu=2.58 and weaker frequency dependence is seen at ν=2.42\nu=2.42 and 2.28. These measurements are consistent with the formation of a bubble phase crystal centered around these ν\nu at very low temperatures
    corecore