103 research outputs found

    Using blogs to make peer-reviewed research more accessible

    Full text link
    Discipline-based education researchers produce knowledge that aims to help instructors improve student learning and educational outcomes. Yet, the information produced may not even reach the educators it is intended to influence. Prior work has found that instructors often face barriers to implementing practices in peer-reviewed literature. Some of these barriers are related to accessing the knowledge in the first place such as difficulty finding and understanding research and a lack of time to do so. To lower these barriers, we created an online blog, PERbites, that summarizes recent discipline-based education research in short posts that use plain language. Having covered nearly 100 papers to date, we conducted a survey to see if we were addressing the need we had originally set out to address. We posted a 23-item survey on our website and received 24 usable responses. The results suggested that readers do generally agree that we are meeting our original goals. Readers reported that our articles were easier to understand and used more plain language than a typical discipline-based education research (DBER) journal article. At the same time, readers thought that all the important information was still included. Finally, readers said that this approach helped them keep up with DBER studies and read about papers they otherwise would not have. However, most readers did not indicate they changed their teaching and research practice as a result of reading our blog. Our results suggest that alternative methods of sharing research (e.g., non-peer reviewed publications or conference talks) can be an effective method of connecting research with practitioners, and future work should consider how we as a community might build on these efforts to ensure education research can make meaningful changes in the classroom.Comment: Published in the Proceedings of the 2022 Physics Education Research Conference, Grand Rapids, MI, US July 13th - July 14t

    Speckle Space-Time Covariance in High-Contrast Imaging

    Full text link
    We introduce a new framework for point-spread function (PSF) subtraction based on the spatio-temporal variation of speckle noise in high-contrast imaging data where the sampling timescale is faster than the speckle evolution timescale. One way that space-time covariance arises in the pupil is as atmospheric layers translate across the telescope aperture and create small, time-varying perturbations in the phase of the incoming wavefront. The propagation of this field to the focal plane preserves some of that space-time covariance. To utilize this covariance, our new approach uses a Karhunen-Lo\'eve transform on an image sequence, as opposed to a set of single reference images as in previous applications of Karhunen-Lo\'eve Image Processing (KLIP) for high-contrast imaging. With the recent development of photon-counting detectors, such as microwave kinetic inductance detectors (MKIDs), this technique now has the potential to improve contrast when used as a post-processing step. Preliminary testing on simulated data shows this technique can improve contrast by at least 10-20% from the original image, with significant potential for further improvement. For certain choices of parameters, this algorithm may provide larger contrast gains than spatial-only KLIP.Comment: Accepted to A

    Can Extreme Bacteria Teach Us About Extraterrestrial Life?

    Get PDF
    Have you ever wondered if there is life beyond Earth? Scientists have been studying this topic for a long time and believe the answer might lie in extremophilic microbes, small organisms that thrive in extreme environments. In a 2022 study, scientists took extremophilic microbes from an analogue environment, or place on Earth similar to Mars, and put them in simulated Martian conditions. After exposing them to higher ultraviolet radiation levels, low oxygen levels, a dry atmosphere, and moisture-free Mars-like soil, these microbes still were able to survive. This research is important in helping us understand if Mars can house life and give us clues into what that life might look like beyond Earth

    Astrobites as a Community-led Model for Education, Science Communication, and Accessibility in Astrophysics

    Get PDF
    Support for early career astronomers who are just beginning to explore astronomy research is imperative to increase retention of diverse practitioners in the field. Since 2010, Astrobites has played an instrumental role in engaging members of the community -- particularly undergraduate and graduate students -- in research. In this white paper, the Astrobites collaboration outlines our multi-faceted online education platform that both eases the transition into astronomy research and promotes inclusive professional development opportunities. We additionally offer recommendations for how the astronomy community can reduce barriers to entry to astronomy research in the coming decade

    Surveying Nearby Brown Dwarfs with HGCA: Direct Imaging Discovery of a Faint, High-Mass Brown Dwarf Orbiting HD 176535 A

    Full text link
    Brown dwarfs with well-measured masses, ages and luminosities provide direct benchmark tests of substellar formation and evolutionary models. We report the first results from a direct imaging survey aiming to find and characterize substellar companions to nearby accelerating stars with the assistance of the Hipparcos-Gaia Catalog of Accelerations (HGCA). In this paper, we present a joint high-contrast imaging and astrometric discovery of a substellar companion to HD 176535 A, a K3.5V main-sequence star aged approximately 3.591.15+0.873.59_{-1.15}^{+0.87} Gyrs at a distance of 36.99±0.0336.99 \pm 0.03 pc. In advance of our high-contrast imaging observations, we combined precision HARPS RVs and HGCA astrometry to predict the potential companion's location and mass. We thereafter acquired two nights of KeckAO/NIRC2 direct imaging observations in the LL' band, which revealed a companion with a contrast of ΔLp=9.20±0.06\Delta L'_p = 9.20\pm0.06 mag at a projected separation of \approx0.\!\!''35 (\approx13 AU) from the host star. We revise our orbital fit by incorporating our dual-epoch relative astrometry using the open-source MCMC orbit fitting code orvara\tt orvara. HD 176535 B is a new benchmark dwarf useful for constraining the evolutionary and atmospheric models of high-mass brown dwarfs. We found a luminosity of log(Lbol/L)=5.26±0.06\rm log(L_{bol}/L_{\odot}) = -5.26\pm0.06 and a model-dependent effective temperature of 980±35980 \pm 35 K for HD 176535 B. Our dynamical mass suggests that some substellar evolutionary models may be underestimating luminosity for high-mass T dwarfs. Given its angular separation and luminosity, HD 176535 B would make a promising candidate for Aperture Masking Interferometry with JWST and GRAVITY/KPIC, and further spectroscopic characterization with instruments like the CHARIS/SCExAO/Subaru integral field spectrograph

    Improving Undergraduate Astronomy Students' Skills with Research Literature via Accessible Summaries: A Case Study with Astrobites-based Lesson Plans

    Full text link
    Undergraduate physics and astronomy students are expected to engage with scientific literature as they begin their research careers, but reading comprehension skills are rarely explicitly taught in major courses. We seek to determine the efficacy of lesson plans designed to improve undergraduate astronomy (or related) majors' perceived ability to engage with research literature by using accessible summaries of current research written by experts in the field. During the 2022-2023 academic year, twelve faculty members incorporated lesson plans using accessible summaries from Astrobites into their undergraduate astronomy major courses, surveyed their students before and after the activities, and participated in follow-up interviews with our research team. Quantitative and qualitative survey data clearly show that students' perceptions of their abilities with jargon, identifying main takeaways of a paper, conceptual understanding of physics and astronomy, and communicating scientific results all improved with use of the tested lesson plans. Additionally, students show evidence of increased confidence of their abilities within astronomy after exposure to these lessons, and instructors valued a ready-to-use resource to incorporate reading comprehension in their pedagogy. This case study with Astrobites-based lesson plans suggests that incorporating current research in the undergraduate classroom through accessible literature summaries may increase students' confidence and ability to engage with research literature, as well as their preparation for participation in research and applied careers.Comment: Submitted to PRPE
    corecore