160 research outputs found

    A P-type ATPase importer that discriminates between essential and toxic transition metals

    Get PDF
    Transition metals, although being essential cofactors in many physiological processes, are toxic at elevated concentrations. Among the membrane-embedded transport proteins that maintain appropriate intracellular levels of transition metals are ATP-driven pumps belonging to the P-type ATPase superfamily. These metal transporters may be differentiated according to their substrate specificities, where the majority of pumps can extrude either silver and copper or zinc, cadmium, and lead. In the present report, we have established the substrate specificities of nine previously uncharacterized prokaryotic transition-metal P-type ATPases. We find that all of the newly identified exporters indeed fall into one of the two above-mentioned categories. In addition to these exporters, one importer, Pseudomonas aeruginosa Q9I147, was also identified. This protein, designated HmtA (heavy metal transporter A), exhibited a different substrate recognition profile from the exporters. In vivo metal susceptibility assays, intracellular metal measurements, and transport experiments all suggest that HmtA mediates the uptake of copper and zinc but not of silver, mercury, or cadmium. The substrate selectivity of this importer ensures the high-affinity uptake of essential metals, while avoiding intracellular contamination by their toxic counterparts

    A distinct mechanism for the ABC transporter BtuCD–BtuF revealed by the dynamics of complex formation

    Get PDF
    ATP-binding cassette (ABC) transporters are integral membrane proteins that translocate a diverse array of substrates across cell membranes. We present here the dynamics of complex formation of three structurally characterized ABC transportersβ€”the BtuCD vitamin B_(12) importer and MetNI d/l-methionine importer from Escherichia coli and the Hi1470/1 metal-chelate importer from Haemophilus influenzaeβ€”in complex with their cognate binding proteins. Similarly to other ABC importers, MetNI interacts with its binding protein with low affinity (K_d ~10^(βˆ’4) M). In contrast, BtuCD–BtuF and Hi1470/1–Hi1472 form stable, high-affinity complexes (K_d ~10^(βˆ’13) and 10^(βˆ’9) M, respectively). In BtuCD–BtuF, vitamin B_(12) accelerates the complex dissociation rate ~10^7-fold, with ATP having an additional destabilizing effect. The findings presented here highlight substantial mechanistic differences between BtuCD–BtuF, and likely Hi1470/1–Hi1472, and the better-characterized maltose and related ABC transport systems, indicating that there is considerable mechanistic diversity within this large protein super-family

    The Funnel Approach to the Precrystallization Production of Membrane Proteins

    Get PDF
    Challenges in the production of integral membrane proteins for structural studies include low expression levels, incorrect membrane insertion, aggregation and instability. In this report, we describe a β€œfunnel approach” to overcoming these difficulties and demonstrate its efficacy in a case study of 36 prokaryotic P-type transporters. A diverse ensemble of modified constructs is generated and tested for expression in Escherichia coli, membrane localization, detergent extraction, and homogeneity. High-throughput methodologies are implemented throughout the process to facilitate identification of promising targets. We find that the choice of promoter, the choice of source organism providing the cloned gene, and, most importantly, the position of the affinity tag have a great effect on successful production. The latter had pronounced effects at all tested levels, from expression levels observed in whole cells to the extent of membrane insertion, and even on protein function. Following the initial streamlined screening, we were able to fine-tune and produce 9 of the 36 targets as materials suitable for crystallization or other structural studies

    Proton Motive Force-Dependent Hoechst 33342 Transport by the ABC Transporter LmrA of Lactococcus lactis

    Get PDF
    The fluorescent compound Hoechst 33342 is a substrate for many multidrug resistance (MDR) transporters and is widely used to characterize their transport activity. We have constructed mutants of the adenosine triphosphate (ATP) binding cassette (ABC)-type MDR transporter LmrA of Lactococcus lactis that are defective in ATP hydrolysis. These mutants and wild-type LmrA exhibited an atypical behavior in the Hoechst 33342 transport assay. In membrane vesicles, Hoechst 33342 transport was shown to be independent of the ATPase activity of LmrA, and it was not inhibited by orthovanadate but sensitive to uncouplers that collapse the proton gradient and to N,N'-dicyclohexylcarbodiimide, an inhibitor of the F0F1-ATPase. In contrast, transport of Hoechst 33342 by the homologous, heterodimeric MDR transporter LmrCD showed a normal ATP dependence and was insensitive to uncouplers of the proton gradient. With intact cells, expression of LmrA resulted in an increased rate of Hoechst 33342 influx while LmrCD caused a decrease in the rate of Hoechst 33342 influx. Cellular toxicity assays using a triple knockout strain, i.e., L. lactis Ξ”lmrA Ξ”lmrCD, demonstrate that expression of LmrCD protects cells against the growth inhibitory effects of Hoechst 33342, while in the presence of LmrA, cells are more susceptible to Hoechst 33342. Our data demonstrate that the LmrA-mediated Hoechst 33342 transport in membrane vesicles is influenced by the transmembrane pH gradient due to a pH-dependent partitioning of Hoechst 33342 into the membrane.

    QacRβˆ’Cation Recognition Is Mediated by a Redundancy of Residues Capable of Charge Neutralization

    Get PDF
    ABSTRACT: The Staphylococcus aureus multidrug binding protein QacR binds to a broad spectrum of structurally dissimilar cationic, lipophilic drugs. Our previous structural analyses suggested that five QacR glutamic acid residues are critical for charge neutralization and specification of certain drugs. For example, E57 and E58 interact with berberine and with one of the positively charged moieties of the bivalent drug dequalinium. Here we report the structural and biochemical effects of substituting E57 and E58 with alanine and glutamine. Unexpectedly, individual substitutions of these residues did not significantly affect QacR drug binding affinity. Structures of QacR(E57Q) and QacR(E58Q) bound to dequalinium indicated that E57 and E58 are redundant for charge neutralization. The most significant finding was that berberine was reoriented in the QacR multidrug binding pocket so that its positive charge was neutralized by side chain oxygen atoms and aromatic residues. Together, these data emphasize the remarkable versatility of the QacR multidrug binding pocket, illustrating that the capacity of QacR to bind myriad cationic drugs is largely governed by the presence in the pocket of a redundancy of polar, charged, and aromatic residues that are capable of electrostatic neutralization. Multidrug resistant bacteria represent a major global health threat that has in great part arisen through the action o

    Comparte la felicidad, educando sobre sexualidad con ciudadanos y ciudadanas habitantes de calle

    Get PDF
    Curso de Especial InterΓ©sLos habitantes de calle (en adelante CHC) se han convertido en una problemΓ‘tica social debido a la desarticulaciΓ³n, violencia y pobreza de la sociedad colombiana. A partir de esta situaciΓ³n se diseΓ±Γ³ y elaborΓ³ la cartilla β€œComparte la felicidad, educando sobre sexualidad con Ciudadanos y Ciudadanas Habitantes de calle” que aborda los cuatro holones de la sexualidad: VinculaciΓ³n afectiva, erotismo, gΓ©nero y reproductividad, con el objetivo de promover la salud sexual y reproductiva, y la prevenciΓ³n de Infecciones de transmisiΓ³n sexual, incluido el VIH/SIDA. Para identificar el contenido de la cartilla se realizΓ³ una entrevista estructurada de la cual se obtuvo la informaciΓ³n a incluir en la cartilla, posteriormente validada en la unidad OASIS.Curso de Especial InterΓ©s1. Resumen 2. JustificaciΓ³n 3. Marco teΓ³rico 4. Objetivos de la investigaciΓ³n 5. MΓ©todologΓ­a 6. Estudio de mercado 7. Resultados 8. DiscusiΓ³n 9. Conclusiones 10. Recomendaciones 11. Referencias 12. ApΓ©ndicesPregradoPsicΓ³log

    Boundary work: becoming middle class in suburban Dar es Salaam

    Get PDF
    Suburban space provides a useful window onto contemporary class practices in Africa, where it is difficult to identify social classes on the basis of income or occupation. In this article I argue that the middle classes and the suburbs are mutually constitutive in the Tanzanian city of Dar es Salaam. Using interviews with residents and local government officials in the city's northern suburbs, I discuss the material and representational practices of middle-class boundary work in relation to land and landscape. If the middle classes do not presently constitute a coherent political-economic force, they are nevertheless transforming the city's former northern peri-urban zones into desirable suburban residential neighbourhoods

    The Response of Lactococcus lactis to Membrane Protein Production

    Get PDF
    Background: The biogenesis of membrane proteins is more complex than that of water-soluble proteins, and recombinant expression of membrane proteins in functional form and in amounts high enough for structural and functional studies is often problematic. To better engineer cells towards efficient protein production, we set out to understand and compare the cellular consequences of the overproduction of both classes of proteins in Lactococcus lactis, employing a combined proteomics and transcriptomics approach. Methodology and Findings: Highly overproduced and poorly expressed membrane proteins both resulted in severe growth defects, whereas amplified levels of a soluble substrate receptor had no effect. In addition, membrane protein overproduction evoked a general stress response (upregulation of various chaperones and proteases), which is probably due to accumulation of misfolded protein. Notably, upon the expression of membrane proteins a cell envelope stress response, controlled by the two-component regulatory CesSR system, was observed. Conclusions: The physiological response of L. lactis to the overproduction of several membrane proteins was determined and compared to that of a soluble protein, thus offering better understanding of the bottlenecks related to membrane protein production and valuable knowledge for subsequent strain engineering.

    A Requirement of TolC and MDR Efflux Pumps for Acid Adaptation and GadAB Induction in Escherichia coli

    Get PDF
    BACKGROUND: The TolC outer membrane channel is a key component of several multidrug resistance (MDR) efflux pumps driven by H(+) transport in Escherichia coli. While tolC expression is under the regulation of the EvgA-Gad acid resistance regulon, the role of TolC in growth at low pH and extreme-acid survival is unknown. METHODS AND PRINCIPAL FINDINGS: TolC was required for extreme-acid survival (pH 2) of strain W3110 grown aerobically to stationary phase. A tolC deletion decreased extreme-acid survival (acid resistance) of aerated pH 7.0-grown cells by 10(5)-fold and of pH 5.5-grown cells by 10-fold. The requirement was specific for acid resistance since a tolC defect had no effect on aerobic survival in extreme base (pH 10). TolC was required for expression of glutamate decarboxylase (GadA, GadB), a key component of glutamate-dependent acid resistance (Gad). TolC was also required for maximal exponential growth of E. coli K-12 W3110, in LBK medium buffered at pH 4.5-6.0, but not at pH 6.5-8.5. The TolC growth requirement in moderate acid was independent of Gad. TolC-associated pump components EmrB and MdtB contributed to survival in extreme acid (pH 2), but were not required for growth at pH 5. A mutant lacking the known TolC-associated efflux pumps (acrB, acrD, emrB, emrY, macB, mdtC, mdtF, acrEF) showed no growth defect at acidic pH and a relatively small decrease in extreme-acid survival when pre-grown at pH 5.5. CONCLUSIONS: TolC and proton-driven MDR efflux pump components EmrB and MdtB contribute to E. coli survival in extreme acid and TolC is required for maximal growth rates below pH 6.5. The TolC enhancement of extreme-acid survival includes Gad induction, but TolC-dependent growth rates below pH 6.5 do not involve Gad. That MDR resistance can enhance growth and survival in acid is an important consideration for enteric organisms passing through the acidic stomach

    Integration of Evolutionary Features for the Identification of Functionally Important Residues in Major Facilitator Superfamily Transporters

    Get PDF
    The identification of functionally important residues is an important challenge for understanding the molecular mechanisms of proteins. Membrane protein transporters operate two-state allosteric conformational changes using functionally important cooperative residues that mediate long-range communication from the substrate binding site to the translocation pathway. In this study, we identified functionally important cooperative residues of membrane protein transporters by integrating sequence conservation and co-evolutionary information. A newly derived evolutionary feature, the co-evolutionary coupling number, was introduced to measure the connectivity of co-evolving residue pairs and was integrated with the sequence conservation score. We tested this method on three Major Facilitator Superfamily (MFS) transporters, LacY, GlpT, and EmrD. MFS transporters are an important family of membrane protein transporters, which utilize diverse substrates, catalyze different modes of transport using unique combinations of functional residues, and have enough characterized functional residues to validate the performance of our method. We found that the conserved cores of evolutionarily coupled residues are involved in specific substrate recognition and translocation of MFS transporters. Furthermore, a subset of the residues forms an interaction network connecting functional sites in the protein structure. We also confirmed that our method is effective on other membrane protein transporters. Our results provide insight into the location of functional residues important for the molecular mechanisms of membrane protein transporters
    • …
    corecore