3,259 research outputs found

    Preliminary Investigation into Modeling The Damage to Carbon Fibre Composites Due to the Thermo-electric Effects of a Lightning Strikes

    No full text
    The impact of a lightning strike causes a short high electrical current burst through Carbon Fibre Composites (CFC). Due to the electrical properties of CFC the large current leads to a rapid heating of the surrounding impact area which degrades and damages the CFC. It is therefore necessary to study in detail the thermal response and possible degradation processes caused to CFC. The degradation takes place in two ways, firstly via direct mechanical fracture due to the thermal expansion of the CFC and secondly via thermo-chemical processes (phase change and pyrolysis) at high temperatures. The main objective of this work is to construct a numerical model of the major physical processes involved, and to understand the correlation between the damage mechanisms and the damage witnessed in modern CFC. For this work we are only considering the thermo-chemical degradation of CFC. Bespoke numerical models have been constructed to predict the extent of the damage caused by the two thermo-chemical processes separately (e.g. a model for phase change and a model for pyrolysis). The numerical model predictions have then been verified experimental by decoupling of the damage mechanisms, e.g. the real Joule heating from a lightning strike is replaced by a high power laser beam acting on composite surface. This was done to simplify the physical processes which occur when a sample is damaged. The experimentally damaged samples were then investigated using X-ray tomography to determine the physical extent of the damage. The experimental results are then compared with the numerical predictions by considering the physical extent of the polymer removal. The extent of polymer removal predicted by the numerical model, solving for pyrolysis, gave a reasonable agreement with the damage seen in the experimental sample. Furthermore the numerical model predicts that the damage caused by polymer phase change has a minimal contribution to the overall extent of the damage

    Which way up? Recognition of homologous DNA segments in parallel and antiparallel alignment

    Full text link
    Homologous gene shuffling between DNA promotes genetic diversity and is an important pathway for DNA repair. For this to occur, homologous genes need to find and recognize each other. However, despite its central role in homologous recombination, the mechanism of homology recognition is still an unsolved puzzle. While specific proteins are known to play a role at later stages of recombination, an initial coarse grained recognition step has been proposed. This relies on the sequence dependence of the DNA structural parameters, such as twist and rise, mediated by intermolecular interactions, in particular electrostatic ones. In this proposed mechanism, sequences having the same base pair text, or are homologous, have lower interaction energy than those sequences with uncorrelated base pair texts; the difference termed the recognition energy. Here, we probe how the recognition energy changes when one DNA fragment slides past another, and consider, for the first time, homologous sequences in antiparallel alignment. This dependence on sliding was termed the recognition well. We find that there is recognition well for anti-parallel, homologous DNA tracts, but only a very shallow one, so that their interaction will differ little from the interaction between two nonhomologous tracts. This fact may be utilized in single molecule experiments specially targeted to test the theory. As well as this, we test previous theoretical approximations in calculating the recognition well for parallel molecules against MC simulations, and consider more rigorously the optimization of the orientations of the fragments about their long axes. The more rigorous treatment affects the recognition energy a little, when the molecules are considered rigid. However when torsional flexibility of the DNA molecules is introduced, we find excellent agreement between analytical approximation and simulation.Comment: Paper with supplemental material attached. 41 pages in all, 4 figures in main text, 3 figures in supplmental. To be submitted to Journa

    Falls prevention in community care: 10 years on

    Get PDF
    Background: A million older people living in Australia receive community care services each year due to experiencing functional or mental health difficulties. This group may be at greater risk of falling than similar-aged people not receiving services. However, there is limited falls prevention research for this population. Purpose: The aim of this study was to identify the falls prevalence rates of older people from 10 Australian community care organizations and compare current falls prevention data to a study 10 years prior that utilized the same 10 organizations. This study also identified factors associated with falling for this population. Patients and methods: This is a cross-sectional descriptive study, in which 5,338 questionnaires were mailed to a random sample of community care recipients aged $65 years. Results: A total of 1,991 questionnaires were returned (37.3%), with 47.7% of respondents having fallen in the previous year, and 32.7% in the month prior to completing the questionnaire, similar to 10 years prior. Community care clients had a 50% higher falls rate than that reported for similar-aged people not receiving services, and this remained unchanged over the last 10 years. Eighty-six per cent of fallers had fallen once or twice, and 60% reported being injured. Thirty-six per cent of respondents reported not being able to get up independently, and only 27.4% of fallers were referred to a falls prevention program (significantly fewer than 10 years ago; 95% CI: 0.821–6.366, p=0.01). Balance issues (odds ratio [OR]: 2.06, 95% CI: 1.288–3.290, p=0.003) and perceived risk of falling in the future being “definite” (OR: 6.42, 95% CI: 1.890–21.808, p=0.003) or “unsure” (OR: 3.31, 95% CI: 1.144–9.544, p=0.027) were risk factors associated with falling. In contrast, individuals referred to a falls prevention intervention had a 47% reduced likelihood of having fallen (95% CI: 0.281–0.988, p=0.046). Conclusion: Community care clients should have their falls risk routinely assessed, and at-risk individuals be offered falls prevention advice and referral to fall prevention programs

    Chandra observations of the accretion-driven millisecond X-ray pulsars XTE J0929-314 and XTE J1751-305 in quiescence

    Full text link
    (Abridge) We observed the accreting millisecond X-ray pulsars XTE J0929-314 and XTE J1751-305 in their quiescent states using Chandra. From XTE J0929-314 we detected 22 photons (0.3-8 keV) in 24.4 ksec, resulting in a count rate of 9 x 10^{-4} c/s. The small number of photons detected did not allow for a detailed spectral analysis, but we can demonstrate that the spectrum is harder than simple thermal emission which is what is usually presumed to arise from a cooling neutron star that has been heated during the outbursts. Assuming a power-law model for the spectrum, we obtain a power-law index of ~1.8 and an unabsorbed flux of 6 x 10^{-15} ergs/s/cm^2 (0.5-10 keV), resulting in a luminosity of 7 x 10^{31} (d/10 kpc)^2 ergs/s, with d in kpc. No thermal component could be detected; such a component contributed at most 30% to the 0.5-10 keV flux. Variability in the count rate of XTE J0929-314 was observed at the 95% confidence level. We did not conclusively detect XTE J1751-305 in our 43 ksec observation, with 0.5-10 keV flux upper limits between 0.2 and 2.7 x 10^{-14} ergs/s/cm^2 depending on assumed spectral shape, resulting in luminosity upper limits of 0.2 - 2 x 10^{32} (d/8 kpc)^2 ergs/s. We compare our results with those obtained for other neutron-star X-ray transients in their quiescent state. Using simple accretion disk physics in combination with our measured quiescent luminosity of XTE J0929-314 and the luminosity upper limits of XTE J1751-305, and the known spin frequency of the neutron stars, we could constrain the magnetic field of the neutron stars in XTE J0929-314 and XTE J1751-305 to be less than 3 x 10^9 (d/10 kpc) and 3 - 7 x 10^8 (d/8 kpc) Gauss (depending on assumed spectral shape of the quiescent spectrum), respectively.Comment: Accepted for publication in ApJ, 29 September 2004. Added spectral variability search for the data of XTE J0929-314 and added the non-detection with Chandra of XTE J1751-30

    The hard quiescent spectrum of the neutron-star X-ray transient EXO 1745-248 in the globular cluster Terzan 5

    Full text link
    We present a Chandra observation of the globular cluster Terzan 5 during times when the neutron-star X-ray transient EXO 1745-248 located in this cluster was in its quiescent state. We detected the quiescent system with a (0.5-10 keV) luminosity of ~2 x 10^{33} ergs/s. This is similar to several other neutron-star transients observed in their quiescent states. However, the quiescent X-ray spectrum of EXO 1745--48 was dominated by a hard power-law component instead of the soft component that usually dominates the quiescent emission of other neutron-star X-ray transients. This soft component could not conclusively be detected in EXO 1745-248 and we conclude that it contributed at most 10% of the quiescent flux in the energy range 0.5-10 keV. EXO 1745-248 is only the second neutron-star transient whose quiescent spectrum is dominated by the hard component (SAX J1808.4-3658 is the other one). We discuss possible explanations for this unusual behavior of EXO 1745-248, its relationship to other quiescent neutron-star systems, and the impact of our results on understanding quiescent X-ray binaries. We also discuss the implications of our results on the way the low-luminosity X-ray sources in globular clusters are classified.Comment: Accepted by ApJ Main Journal, September 22, 2004. Figure 2 is a color figur

    Faint X-ray Sources in the Globular Cluster Terzan 5

    Get PDF
    We report our analysis of a Chandra X-ray observation of the rich globular cluster Terzan 5, in which we detect 50 sources to a limiting 1.0-6 keV X-ray luminosity of 3*10^{31} ergs/s within the half-mass radius of the cluster. Thirty-three of these have L_X>10^{32} ergs/s, the largest number yet seen in any globular cluster. In addition to the quiescent low-mass X-ray binary (LMXB, identified by Wijnands et al.), another 12 relatively soft sources may be quiescent LMXBs. We compare the X-ray colors of the harder sources in Terzan 5 to the Galactic Center sources studied by Muno and collaborators, and find the Galactic Center sources to have harder X-ray colors, indicating a possible difference in the populations. We cannot clearly identify a metallicity dependence in the production of low-luminosity X-ray binaries in Galactic globular clusters, but a metallicity dependence of the form suggested by Jordan et al. for extragalactic LMXBs is consistent with our data.Comment: 15 pages, 10 figures (3 color). Resubmitted to ApJ after incorporating referee comments. v2: Added references to introductio

    Extending Feynman's Formalisms for Modelling Human Joint Action Coordination

    Full text link
    The recently developed Life-Space-Foam approach to goal-directed human action deals with individual actor dynamics. This paper applies the model to characterize the dynamics of co-action by two or more actors. This dynamics is modelled by: (i) a two-term joint action (including cognitive/motivatonal potential and kinetic energy), and (ii) its associated adaptive path integral, representing an infinite--dimensional neural network. Its feedback adaptation loop has been derived from Bernstein's concepts of sensory corrections loop in human motor control and Brooks' subsumption architectures in robotics. Potential applications of the proposed model in human--robot interaction research are discussed. Keywords: Psycho--physics, human joint action, path integralsComment: 6 pages, Late

    Voltage gating of mechanosensitive PIEZO channels

    Get PDF
    Mechanosensitive PIEZO ion channels are evolutionarily conserved proteins whose presence is critical for normal physiology in multicellular organisms. Here we show that, in addition to mechanical stimuli, PIEZO channels are also powerfully modulated by voltage and can even switch to a purely voltage-gated mode. Mutations that cause human diseases, such as xerocytosis, profoundly shift voltage sensitivity of PIEZO1 channels toward the resting membrane potential and strongly promote voltage gating. Voltage modulation may be explained by the presence of an inactivation gate in the pore, the opening of which is promoted by outward permeation. Older invertebrate (fly) and vertebrate (fish) PIEZO proteins are also voltage sensitive, but voltage gating is a much more prominent feature of these older channels. We propose that the voltage sensitivity of PIEZO channels is a deep property co-opted to add a regulatory mechanism for PIEZO activation in widely different cellular contexts

    MIMAC : a micro-TPC detector for non-baryonic dark matter search

    Full text link
    The MIMAC project is multi-chamber detector for Dark Matter search, aiming at measuring both track and ionization with a matrix of micromegas micro-TPC filled with He3 and CF4. Recent experimental results on the first measurements of the Helium quenching factor at low energy (1 keV recoil) are presented.Comment: 7 pages, Proc of Dark Energy and Dark Matter conference, Lyon : France (2008

    Can community care workers deliver a falls prevention exercise program? A feasibility study

    Get PDF
    Background: Almost half of older people receiving community care fall each year and this rate has not improved in the last decade. Falls prevention programs targeted at this group are uncommon, and expensively delivered by university trained allied health professionals. Purpose: To investigate the feasibility of community care workers delivering a falls prevention exercise program to older clients, at low or medium risk of falling, as part of an existing service provision. Patients and methods: Community care workers from 10 community care organizations participated in the training for, and delivery to their clients of, an 8-week evidence-based falls prevention exercise program. Community care workers included assessment staff (responsible for identifying the need for community care services through completing an assessment) and support workers (responsible for providing support in the home). Clients were surveyed anonymously at the completion of the intervention and workers participated in a semi-structured interview. Results: Twenty-five community care workers participated in the study. The falls prevention program was delivered to 29 clients, with an average age of 82.7 (SD: 8.72) years and consisting of 65.5% female. The intervention was delivered safely with no adverse events recorded, and the eligibility and assessment tools were completed by the majority of community care workers (93.1%). Assessment staff found it difficult to find time to deliver the intervention. Support workers were able to complete the intervention within their current service delivery period, with the initial assessment taking a small amount of additional time. Support workers reported enjoying the additional responsibility afforded by delivering the falls prevention program and seeing changes in their clients. The majority of clients (82%) reported enjoying the exercises, with 59% reporting that they felt it made a positive change in their health. Cl ients completed the exercises on average 4.8 (SD: 2.2) days per week. Conclusion: Community care workers who have completed appropriate training are able to deliver a falls prevention exercise program to their clients as part of their current services. Further research is required to determine whether the program reduces the rate of falls for community care clients and whether integration of a falls prevention program into an existing service is cost-effective
    • …
    corecore