6,852 research outputs found

    Urban flooding in Britain:An approach to comparing ancient and contemporary flood exposure

    Get PDF
    Using modified UK Environment Agency Flood Estimation Handbook techniques, inundation extent and likely flood hydrographs for 0.1% probability annual return periods are compared for twelve Roman town sites in the UK, both at the present day and for simulated Roman catchment conditions. Eight of the study sites appear to have suffered minimal urban flood liability as occupied in the Roman period. The exceptions were Canterbury, York, Leicester, and Chichester. It is reasonable to expect flood characteristics to have changed subsequently in response to transformations in catchment land use, urban expansion, wetland reclamation, and floodway engineering. However, modelling results suggest limited differences in flood flows attributable to such factors. Greater present-day urban damage liability essentially results from floodplain urban extension. There are also contrasts between sites: those Roman towns lying on floodplains themselves, rather than on slightly elevated terraces (Canterbury, Chichester), are dominated by groundwater regimes with attenuated flood peaks. Taken together, these results suggest some Roman awareness of the actualities of urban flood liability at the time. Site sensitivity has not been carried forward as urban expansion has flourished, especially from the nineteenth century with suburban and industrial expansion. The straightforward mapping approach here suggested should in future take account of multiple century-scale hydroclimatic changes, morphological river channel and floodplain transformations over similar time periods, and on-going improvements to inundation modelling

    Performance and Fundamental Processes at Low Energy in a Two-Phase Liquid Xenon Dark Matter Detector

    Get PDF
    We extend the study of the performance of a prototype two-phase liquid xenon WIMP dark matter detector to recoil energies below 20 keV. We demonstrate a new method for obtaining the best estimate of the energies of events using a calibrated sum of charge and light signals and introduce the corresponding discrimination parameter, giving its mean value at 4 kV/cm for electron and nuclear recoils up to 300 and 100 keV, respectively. We show that fluctuations in recombination limit discrimination for most energies, and reveal an improvement in discrimination below 20 keV due to a surprising increase in ionization yield for low energy electron recoils. This improvement is crucial for a high-sensitivity dark matter search.Comment: 4 pages, 6 figures, submitted to DM06 conference proceedings in Nucl Phys

    Neutron Star Masses and Radii as Inferred from kilo-Hertz QPOs

    Get PDF
    Kilo-Hertz (kHz) Quasi-periodic oscillations (QPOs) have been discovered in the X-ray fluxes of 8 low-mass X-ray binaries (LMXBs) with the Rossi X-ray Timing Explorer (RXTE). The characteristics of these QPOs are remarkably similar from one source to another. In particular, the highest observed QPO frequencies for 6 of the 8 sources fall in a very narrow range: 1,066 to 1,171 Hz. This is the more remarkable when one considers that these sources are thought to have very different luminosities and magnetic fields, and produce very different count rates in the RXTE detectors. Therefore it is highly unlikely that this near constancy of the highest observed frequencies is due to some unknown selection effect or instrumental bias. In this letter we propose that the highest observed QPO frequency can be taken as the orbital frequency of the marginally stable orbit. This leads to the conclusions that the neutron stars in these LMXBs are inside their marginally stable orbits and have masses in the vicinity of 2.0 solar masses. This mass is consistent with the hypothesis that these neutron stars were born with about 1.4 solar masses and have been accreting matter at a fraction of the Eddington limit for 100 million years.Comment: 7 pages, uses aas2pp4.sty, Accepted by ApJ

    BeppoSAX observation of the eclipsing dipping X-ray binary X1658-298

    Get PDF
    Results of a 2000 August 12-13 BeppoSAX observation of the 7.1 hr eclipsing, dipping, bursting, transient, low-mass X-ray binary (LMXRB) X1658-298 are presented. The spectrum outside of eclipses, dips and bursts can be modeled by the combination of a soft disk-blackbody and a harder Comptonized component with a small amount (1.3 10E21 atom/cm2) of low-energy absorption. In contrast, an RXTE observation 18 months earlier during the same outburst, measured an absorption of 5.0 10E22 atom/cm2. Such a change is consistent with a thinning of the accretion disk as the outburst progresses. Structured residuals from the best-fit spectral model are present which are tentatively identified with Ne-K/Fe-L and Fe-K shell emission. The spectral changes during dips are complex and may be modeled by a strong (~3 10E23 atom/cm2) increase in absorption of the Comptonized component only, together with reductions in normalizations of both spectral components. This behavior is in contrast to the ``complex continuum'' model for X-ray dip sources, where the softer blackbody component rapidly suffers strong absorption. It is however, similar to that found during recent XMM-Newton observations of the eclipsing, dipping, LMXRB EXO0748-676.Comment: 11 pages. Accepted for publication in A&A

    DNA methylation profiling of the human major histocompatibility complex: A pilot study for the Human Epigenome Project

    Get PDF
    The Human Epigenome Project aims to identify, catalogue, and interpret genome-wide DNA methylation phenomena. Occurring naturally on cytosine bases at cytosine-guanine dinucleotides, DNA methylation is intimately involved in diverse biological processes and the aetiology of many diseases. Differentially methylated cytosines give rise to distinct profiles, thought to be specific for gene activity, tissue type, and disease state. The identification of such methylation variable positions will significantly improve our understanding of genome biology and our ability to diagnose disease. Here, we report the results of the pilot study for the Human Epigenome Project entailing the methylation analysis of the human major histocompatibility complex. This study involved the development of an integrated pipeline for high-throughput methylation analysis using bisulphite DNA sequencing, discovery of methylation variable positions, epigenotyping by matrix-assisted laser desorption/ionisation mass spectrometry, and development of an integrated public database available at http://www.epigenome.org. Our analysis of DNA methylation levels within the major histocompatibility complex, including regulatory exonic and intronic regions associated with 90 genes in multiple tissues and individuals, reveals a bimodal distribution of methylation profiles (i.e., the vast majority of the analysed regions were either hypo- or hypermethylated), tissue specificity, inter-individual variation, and correlation with independent gene expression data

    Precise mass-dependent QED contributions to leptonic g-2 at order alpha^2 and alpha^3

    Full text link
    Improved values for the two- and three-loop mass-dependent QED contributions to the anomalous magnetic moments of the electron, muon, and tau lepton are presented. The Standard Model prediction for the electron (g-2) is compared with its most precise recent measurement, providing a value of the fine-structure constant in agreement with a recently published determination. For the tau lepton, differences with previously published results are found and discussed. An updated value of the fine-structure constant is presented in "Note added after publication."Comment: 6 pages, 1 figure. v2: New determination of alpha presented (based on the recent electron g-2 measurement). v3: New formulae added in Sec.IIB. v4: Updated value of alpha presente

    GX 339-4: back to life

    Get PDF
    We report preliminary results of a RossiXTE campaign on the 2002 outburst of the black-hole candidate GX 339-4. We show power density spectra of five observations during the early phase of the outburst. The first four power spectra show a smooth transition between a Low State and a Very High State. The fifth power spectrum resembles a High State, but a strong 6 Hz QPO appears suddenly within 16 seconds.Comment: 3 pages, 3 figures; to appear in Proceedings of the 4th Microquasar Workshop, eds. Ph Durouchoux, Y. Fuchs and J. Rodriguez, published by the Center for Space Physics: Kolkat

    Carbon release by selective alloying of transition metal carbides

    Full text link
    We have performed first principles density functional theory calculations on TiC alloyed on the Ti sublattice with 3d transition metals ranging from Sc to Zn. The theory is accompanied with experimental investigations, both as regards materials synthesis as well as characterization. Our results show that by dissolving a metal with a weak ability to form carbides, the stability of the alloy is lowered and a driving force for the release of carbon from the carbide is created. During thin film growth of a metal carbide this effect will favor the formation of a nanocomposite with carbide grains in a carbon matrix. The choice of alloying elements as well as their concentrations will affect the relative amount of carbon in the carbide and in the carbon matrix. This can be used to design the structure of nanocomposites and their physical and chemical properties. One example of applications is as low-friction coatings. Of the materials studied, we suggest the late 3d transition metals as the most promising elements for this phenomenon, at least when alloying with TiC.Comment: 9 pages, 6 figure
    • 

    corecore