29 research outputs found

    Rhipicephalus microplus serine protease inhibitor family: annotation, expression and functional characterisation assessment

    Get PDF
    Background: Rhipicephalus (Boophilus) microplus evades the host's haemostatic system through a complex protein array secreted into tick saliva. Serine protease inhibitors (serpins) conform an important component of saliva which are represented by a large protease inhibitor family in Ixodidae. These secreted and non-secreted inhibitors modulate diverse and essential proteases involved in different physiological processes. Methods: The identification of R. microplus serpin sequences was performed through a web-based bioinformatics environment called Yabi. The database search was conducted on BmiGi V1, BmiGi V2.1, five SSH libraries, Australian tick transcriptome libraries and RmiTR V1 using bioinformatics methods. Semi quantitative PCR was carried out using different adult tissues and tick development stages. The cDNA of four identified R. microplus serpins were cloned and expressed in Pichia pastoris in order to determine biological targets of these serpins utilising protease inhibition assays. Results: A total of four out of twenty-two serpins identified in our analysis are new R. microplus serpins which were named as RmS-19 to RmS-22. The analyses of DNA and predicted amino acid sequences showed high conservation of the R. microplus serpin sequences. The expression data suggested ubiquitous expression of RmS except for RmS-6 and RmS-14 that were expressed only in nymphs and adult female ovaries, respectively. RmS-19, and -20 were expressed in all tissues samples analysed showing their important role in both parasitic and non-parasitic stages of R. microplus development. RmS-21 was not detected in ovaries and RmS-22 was not identified in ovary and nymph samples but were expressed in the rest of the samples analysed. A total of four expressed recombinant serpins showed protease specific inhibition for Chymotrypsin (RmS-1 and RmS-6), Chymotrypsin / Elastase (RmS-3) and Thrombin (RmS-15). Conclusion: This study constitutes an important contribution and improvement to the knowledge about the physiologic role of R. microplus serpins during the host-tick interaction

    Purification of biotinylated cell surface proteins from Rhipicephalus microplus epithelial gut cells

    Get PDF
    Rhipicephalus microplus - the cattle tick - is the most significant ectoparasite in terms of economic impact on livestock as a vector of several pathogens. Efforts have been dedicated to the cattle tick control to diminish its deleterious effects, with focus on the discovery of vaccine candidates, such as BM86, located on the surface of the tick gut epithelial cells. Current research focuses upon the utilization of cDNA and genomic libraries, to screen for other vaccine candidates. The isolation of tick gut cells constitutes an important advantage in investigating the composition of surface proteins upon the tick gut cells membrane. This paper constitutes a novel and feasible method for the isolation of epithelial cells, from the tick gut contents of semi-engorged R. microplus. This protocol utilizes TCEP and EDTA to release the epithelial cells from the subepithelial support tissues and a discontinuous density centrifugation gradient to separate epithelial cells from other cell types. Cell surface proteins were biotinylated and isolated from the tick gut epithelial cells, using streptavidin-linked magnetic beads allowing for downstream applications in FACS or LC-MS/MS-analysis

    Comparative microarray analysis of Rhipicephalus (Boophilus) microplus expression profiles of larvae pre-attachment and feeding adult female stages on Bos indicus and Bos taurus cattle

    Get PDF
    Background: Rhipicephalus (Boophilus) microplus is an obligate blood feeder which is host specific to cattle. Existing knowledge pertaining to the host or host breed effects on tick transcript expression profiles during the tick - host interaction is poor. Results: Global analysis of gene expression changes in whole R. microplus ticks during larval, pre-attachment and early adult stages feeding on Bos indicus and Bos taurus cattle were compared using gene expression microarray analysis. Among the 13,601 R. microplus transcripts from BmiGI Version 2 we identified 297 high and 17 low expressed transcripts that were significantly differentially expressed between R. microplus feeding on tick resistant cattle [Bos indicus (Brahman)] compared to R. microplus feeding on tick susceptible cattle [Bos taurus (Holstein-Friesian)] (p <= 0.001). These include genes encoding enzymes involved in primary metabolism, and genes related to stress, defence, cell wall modification, cellular signaling, receptor, and cuticle formation. Microarrays were validated by qRT-PCR analysis of selected transcripts using three housekeeping genes as normalization controls. Conclusion: The analysis of all tick stages under survey suggested a coordinated regulation of defence proteins, proteases and protease inhibitors to achieve successful attachment and survival of R. microplus on different host breeds, particularly Bos indicus cattle. R. microplus ticks demonstrate different transcript expression patterns when they encounter tick resistant and susceptible breeds of cattle. In this study we provide the first transcriptome evidence demonstrating the influence of tick resistant and susceptible cattle breeds on transcript expression patterns and the molecular physiology of ticks during host attachment and feeding

    Evolutionary conserved microRNAs are ubiquitously expressed compared to tick-specific miRNAs in the cattle tick Rhipicephalus (Boophilus) microplus

    Get PDF
    Background: MicroRNAs (miRNAs) are small non-coding RNAs that act as regulators of gene expression in eukaryotes modulating a large diversity of biological processes. The discovery of miRNAs has provided new opportunities to understand the biology of a number of species. The cattle tick, Rhipicephalus (Boophilus) microplus, causes significant economic losses in cattle production worldwide and this drives us to further understand their biology so that effective control measures can be developed. To be able to provide new insights into the biology of cattle ticks and to expand the repertoire of tick miRNAs we utilized Illumina technology to sequence the small RNA transcriptomes derived from various life stages and selected organs of R. microplus. Results: To discover and profile cattle tick miRNAs we employed two complementary approaches, one aiming to find evolutionary conserved miRNAs and another focused on the discovery of novel cattle-tick specific miRNAs. We found 51 evolutionary conserved R. microplus miRNA loci, with 36 of these previously found in the tick Ixodes scapularis. The majority of the R. microplus miRNAs are perfectly conserved throughout evolution with 11, 5 and 15 of these conserved since the Nephrozoan (640 MYA), Protostomian (620MYA) and Arthropoda (540 MYA) ancestor, respectively. We then employed a de novo computational screening for novel tick miRNAs using the draft genome of I. scapularis and genomic contigs of R. microplus as templates. This identified 36 novel R. microplus miRNA loci of which 12 were conserved in I. scapularis. Overall we found 87 R. microplus miRNA loci, of these 15 showed the expression of both miRNA and miRNA* sequences. R. microplus miRNAs showed a variety of expression profiles, with the evolutionary-conserved miRNAs mainly expressed in all life stages at various levels, while the expression of novel tick-specific miRNAs was mostly limited to particular life stages and/or tick organs. Conclusions: Anciently acquired miRNAs in the R. microplus lineage not only tend to accumulate the least amount of nucleotide substitutions as compared to those recently acquired miRNAs, but also show ubiquitous expression profiles through out tick life stages and organs contrasting with the restricted expression profiles of novel tick-specific miRNAs

    Genomic analysis of Campylobacter fetus subspecies: identification of candidate virulence determinants and diagnostic assay targets

    Get PDF
    Background: Campylobacter fetus subspecies venerealis is the causative agent of bovine genital campylobacteriosis, asymptomatic in bulls the disease is spread to female cattle causing extensive reproductive loss. The microbiological and molecular differentiation of C. fetus subsp. venerealis from C. fetus subsp. fetus is extremely difficult. This study describes the analysis of the available C. fetus subsp. venerealis AZUL-94 strain genome (~75–80%) to identify elements exclusively found in C. fetus subsp. venerealis strains as potential diagnostic targets and the characterisation of subspecies virulence genes. Results: Eighty Kb of genomic sequence (22 contigs) was identified as unique to C. fetus subsp. venerealis AZUL-94 and consisted of type IV secretory pathway components, putative plasmid genes and hypothetical proteins. Of the 9 PCR assays developed to target C. fetus subsp. venerealis type IV secretion system genes, 4 of these were specific for C. fetus subsp. venerealis biovar venerealis and did not detect C. fetus subsp. venerealis biovar intermedius. Two assays were specific for C. fetus subsp. venerealis AZUL-94 strain, with a further single assay specific for the AZUL-94 strain and C. fetus subsp. venerealis biovar intermedius (and not the remaining C. fetus subsp. venerealis biovar venerealis strains tested). C. fetus subsp. fetus and C. fetus subsp. venerealis were found to share most common Campylobacter virulence factors such as SAP, chemotaxis, flagellar biosynthesis, 2-component systems and cytolethal distending toxin subunits (A, B, C). We did not however, identify in C. fetus the full complement of bacterial adherence candidates commonly found in other Campylobacter spp. Conclusion: The comparison of the available C. fetus subsp. venerealis genome sequence with the C. fetus subsp. fetus genome identified 80 kb of unique C. fetus subsp. venerealis AZUL94 sequence, with subsequent PCR confirmation demonstrating inconsistent amplification of these targets in all other C. fetus subsp. venerealis strains and biovars tested. The assays developed here highlight the complexity of targeting strain specific virulence genes for field studies for the molecular identification and epidemiology of C. fetus

    Evidence of a tick RNAi pathway by comparative genomics and reverse genetics screen of targets with known loss-of-function phenotypes in Drosophila

    Get PDF
    Background The Arthropods are a diverse group of organisms including Chelicerata (ticks, mites, spiders), Crustacea (crabs, shrimps), and Insecta (flies, mosquitoes, beetles, silkworm). The cattle tick, Rhipicephalus (Boophilus) microplus, is an economically significant ectoparasite of cattle affecting cattle industries world wide. With the availability of sequence reads from the first Chelicerate genome project (the Ixodes scapularis tick) and extensive R. microplus ESTs, we investigated evidence for putative RNAi proteins and studied RNA interference in tick cell cultures and adult female ticks targeting Drosophila homologues with known cell viability phenotype. Results We screened 13,643 R. microplus ESTs and I. scapularis genome reads to identify RNAi related proteins in ticks. Our analysis identified 31 RNAi proteins including a putative tick Dicer, RISC associated (Ago-2 and FMRp), RNA dependent RNA polymerase (EGO-1) and 23 homologues implicated in dsRNA uptake and processing. We selected 10 R. microplus ESTs with >80% similarity to D. melanogaster proteins associated with cell viability for RNAi functional screens in both BME26 R. microplus embryonic cells and female ticks in vivo. Only genes associated with proteasomes had an effect on cell viability in vitro. In vivo RNAi showed that 9 genes had significant effects either causing lethality or impairing egg laying. Conclusion We have identified key RNAi-related proteins in ticks and along with our loss-of-function studies support a functional RNAi pathway in R. microplus. Our preliminary studies indicate that tick RNAi pathways may differ from that of other Arthropods such as insects

    The complexity of Rhipicephalus (Boophilus) microplus genome characterised through detailed analysis of two BAC clones

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Rhipicephalus (Boophilus) microplus (Rmi) </it>a major cattle ectoparasite and tick borne disease vector, impacts on animal welfare and industry productivity. In arthropod research there is an absence of a complete Chelicerate genome, which includes ticks, mites, spiders, scorpions and crustaceans. Model arthropod genomes such as <it>Drosophila </it>and <it>Anopheles </it>are too taxonomically distant for a reference in tick genomic sequence analysis. This study focuses on the <it>de-novo </it>assembly of two <it>R. microplus </it>BAC sequences from the understudied <it>R microplus </it>genome. Based on available <it>R. microplus </it>sequenced resources and comparative analysis, tick genomic structure and functional predictions identify complex gene structures and genomic targets expressed during tick-cattle interaction.</p> <p>Results</p> <p>In our BAC analyses we have assembled, using the correct positioning of BAC end sequences and transcript sequences, two challenging genomic regions. Cot DNA fractions compared to the BAC sequences confirmed a highly repetitive BAC sequence BM-012-E08 and a low repetitive BAC sequence BM-005-G14 which was gene rich and contained short interspersed elements (SINEs). Based directly on the BAC and Cot data comparisons, the genome wide frequency of the SINE Ruka element was estimated. Using a conservative approach to the assembly of the highly repetitive BM-012-E08, the sequence was de-convoluted into three repeat units, each unit containing an 18S, 5.8S and 28S ribosomal RNA (rRNA) encoding gene sequence (rDNA), related internal transcribed spacer and complex intergenic region.</p> <p>In the low repetitive BM-005-G14, a novel gene complex was found between to 2 genes on the same strand. Nested in the second intron of a large 9 Kb <it>papilin </it>gene was a <it>helicase </it>gene. This <it>helicase </it>overlapped in two exonic regions with the <it>papilin</it>. Both these genes were shown expressed in different tick life stage important in ectoparasite interaction with the host. Tick specific sequence differences were also determined for the <it>papilin </it>gene and the protein binding sites of the 18S subunit in a comparison to <it>Bos taurus</it>.</p> <p>Conclusion</p> <p>In the absence of a sequenced reference genome we have assembled two complex BAC sequences, characterised novel gene structure that was confirmed by gene expression and sequencing analyses. This is the first report to provide evidence for 2 eukaryotic genes with exon regions that overlap on the same strand, the first to describe <it>Rhipicephalinae papilin</it>, and the first to report the complete ribosomal DNA repeated unit sequence structure for ticks. The Cot data estimation of genome wide sequence frequency means this research will underpin future efforts for genome sequencing and assembly of the <it>R. microplus </it>genome.</p

    Discovery of a novel iflavirus sequence in the eastern paralysis tick Ixodes holocyclus

    Get PDF
    Ixodes holocyclus, the eastern paralysis tick, is a significant parasite in Australia in terms of animal and human health. However, very little is known about its virome. In this study, next-generation sequencing of I. holocyclus salivary glands yielded a full-length genome sequence which phylogenetically groups with viruses classified in the Iflaviridae family and shares 45% amino acid similarity with its closest relative Bole hyalomma asiaticum virus 1. The sequence of this virus, provisionally named Ixodes holocyclus iflavirus (IhIV) has been identified in tick populations from northern New South Wales and Queensland, Australia and represents the first virus sequence reported from I. holocyclus

    Effective inhibition of thrombin by Rhipicephalus microplus serpin-15 (RmS-15) obtained in the yeast Pichia pastoris

    No full text
    The cattle tick (Rhipicephalus microplus) affects cattle industries in tropical and subtropical countries because it is the vector of babesiosis and anaplasmosis which constitutes a threat to the health of cattle. During blooding feeding, ticks secrete saliva containing a complex of bioactive molecules into the injured site to evade host's defensive responses. Serine protease inhibitors (serpins) are important anti-haemostatic molecules present in tick saliva that are necessary for a successful blood feeding. Several serpin sequences have been reported in R. microplus but there is a gap of information about their functions during host-parasite interactions. In this study, the RmS-15 expressed in the yeast Pichia pastoris was characterised using kinetic assays and in vitro analysis. The inhibitory enzymatic assays conducted showed that RmS-15 is a physiological inhibitor of thrombin with a stoichiometric inhibition (SI) of 1.5 and high inhibition affinity with ka=9.3±0.5×104Ms. RmS-15 delayed the clotting of plasma in a dose-dependent manner as determined in a recalcification time assay. Significant elevated ELISA titres were observed in tick resistant and susceptible cattle on day 28 after the tick infestation (

    Could Australian ticks harbour emerging viral pathogens?

    No full text
    Tick-borne viruses contribute significantly to the disease burden in Europe, Asia and the US. Historically, some of the most well-known viruses from this group include the human pathogens, tick-borne encephalitis virus and Crimean-Congo haemorrhagic fever virus. More recently multiple emerging tick-borne viruses have been associated with severe disease in humans with Bourbon virus and Heartland virus isolated from patients in the US and severe fever with thrombocytopenia syndrome virus reported from China, Japan, and South Korea. Such examples highlight the need for broader approaches to survey arthropod pathogens, to encompass not only known but novel pathogens circulating in Australian tick populations
    corecore