6 research outputs found

    2N+4-rule and an atlas of bulk optical resonances of zigzag graphene nanoribbons

    Get PDF
    Development of on-chip integrated carbon-based optoelectronic nanocircuits requires fast and non-invasive structural characterization of their building blocks. Recent advances in synthesis of single wall carbon nanotubes and graphene nanoribbons allow for their use as atomically precise building blocks. However, while cataloged experimental data are available for the structural characterization of carbon nanotubes, such an atlas is absent for graphene nanoribbons. Here we theoretically investigate the optical absorption resonances of armchair carbon nanotubes and zigzag graphene nanoribbons continuously spanning the tube (ribbon) transverse sizes from 0.5(0.4) nm to 8.1(12.8) nm. We show that the linear mapping is guaranteed between the tube and ribbon bulk resonance when the number of atoms in the tube unit cell is 2 N+ 4 , where N is the number of atoms in the ribbon unit cell. Thus, an atlas of carbon nanotubes optical transitions can be mapped to an atlas of zigzag graphene nanoribbons

    Accurate determination of the chiral indices of individual carbon nanotubes by combining electron diffraction and Resonant Raman spectroscopy

    Get PDF
    The experimental approach combining high resolution transmission electron microscopy (HRTEM), electron diffraction (ED) and resonant Raman spectroscopy (RRS) on the same free-standing individual carbon nanotubes (CNT) is the most efficient method to determine unambiguously the intrinsic features of the Raman-active phonons. In this paper, we review the main results obtained by the approach regarding the intrinsic features of the phonons of single-walled (SWNT) and double-walled carbon nanotubes (DWNT). First, we detail the different methods to identify the structure of SWNTs and DWNTs from the analysis of their electron diffraction patterns (EDP). In the following, we remind the principal features of the Raman response of SWNTs, unambiguously index-identified by ED. A special attention is devoted to the effect of the inter-layer interaction on the frequencies of the Raman-active phonons in index-identified DWNTs. The information obtained on index-identified SWNT and DWNT allows us to propose Raman criteria, which help identifying CNT when the ED fails to propose a single assignment. The efficiency of the Raman criteria as the complement to the ED information for the index-assignment of a few SWNTs and DWNTs is shown. The same approach to index-assign a triple-walled carbon nanotube (TWNT), by combining ED and RRS information, is reported

    Interlayer Dependence of G-Modes in Semiconducting Double-Walled Carbon Nanotubes

    Get PDF
    A double-walled carbon nanotube (DWNT), a coaxial composite of two single walled carbon nanotubes (SWNT), provides a unique model to study interactions between thetwo constituent SWNTs. Combining high resolution transmission electron microscopy (HRTEM), electron diffraction (ED), and resonant Raman scattering (RRS) experiments on the same individual suspended DWNT is the ultimate way to relate unambiguously its atomicstructure, defined by the chiral indices of the coaxial outer/inner SWNTs, and its Raman-active vibration modes. This approach is used to investigate the intertube distance dependence of theG-modes of individual index-identified DWNTs composed of two semiconducting SWNTs.We state the main features of the dependence of the G-mode frequencies on the distance between the inner and outer layers: (i) When the interlayer distance is larger than the nominal van der Waals distance (close to 0.34 nm), a downshift of the inner-layer G-modes with respectto the G-modes in the equivalent SWNTs is measured. (ii) The amplitude of the downshiftdepends on the interlayer distance, or in other words, on the negative pressure felt by the innerlayer in DWNT. (iii) No shift is observed for an intertube distance close to 0.34 nm

    SYNTHESIS AND LUMINESCENT INVESTIGATION ON THE CALCIUM SILICATE CA3 SI 2 O7 , ACTIVATED WITH EU2+ IONS

    No full text
    The thermodynamic analysis of possible chemical processes occurring in the system CaO:SiO2=3:2 was carried out. Optimized conditions for the preparation Ca3(1-х)Eu3xSi2O7 firm solutions have been determined. It was shown that the effective luminescence of Eu2+ions in Ca3Si2O7 with a maximum at 625 nm creates pre-conditions for the use of this material as a phosphor for white light-emitting diodes
    corecore