461 research outputs found
Italian adaptation of the Multilingual Assessment Instrument for Narratives.
This paper presents the Italian version of the Multilingual Assessment tool for Narratives (MAIN), describes how it was developed and reports on some recent uses of MAIN within the Italian context. The Italian MAIN has been used in different research projects and for clinical purposes; results have been presented at conferences and in peer reviewed papers. The results indicate that MAIN is an appropriate assessment tool for evaluating children’s narrative competence, in production and comprehension from preschool age (5 years) to school age (8 years) in typical language development, bilingual development and language delay/disorders
Dependable Distributed Training of Compressed Machine Learning Models
The existing work on the distributed training of machine learning (ML) models has consistently overlooked the distribution of the achieved learning quality, focusing instead on its average value. This leads to a poor dependability of the resulting ML models, whose performance may be much worse than expected. We fill this gap by proposing DepL, a framework for dependable learning orchestration, able to make high-quality, efficient decisions on (i) the data to leverage for learning, (ii) the models to use and when to switch among them, and (iii) the clusters of nodes, and the resources thereof, to exploit. For concreteness, we consider as possible available models a full DNN and its compressed versions.
Unlike previous studies, DepL guarantees that a target learning quality is reached with a target probability, while keeping the training cost at a minimum. We prove that DepL has constant competitive ratio and polynomial complexity, and show that it outperforms the state-of-the-art by over 27% and closely matches the optimum
Slimmable Encoders for Flexible Split DNNs in Bandwidth and Resource Constrained IoT Systems
The execution of large deep neural networks (DNN) at mobile edge devices
requires considerable consumption of critical resources, such as energy, while
imposing demands on hardware capabilities. In approaches based on edge
computing the execution of the models is offloaded to a compute-capable device
positioned at the edge of 5G infrastructures. The main issue of the latter
class of approaches is the need to transport information-rich signals over
wireless links with limited and time-varying capacity. The recent split
computing paradigm attempts to resolve this impasse by distributing the
execution of DNN models across the layers of the systems to reduce the amount
of data to be transmitted while imposing minimal computing load on mobile
devices. In this context, we propose a novel split computing approach based on
slimmable ensemble encoders. The key advantage of our design is the ability to
adapt computational load and transmitted data size in real-time with minimal
overhead and time. This is in contrast with existing approaches, where the same
adaptation requires costly context switching and model loading. Moreover, our
model outperforms existing solutions in terms of compression efficacy and
execution time, especially in the context of weak mobile devices. We present a
comprehensive comparison with the most advanced split computing solutions, as
well as an experimental evaluation on GPU-less devices
Study of MicroPattern Gaseous detectors with novel nanodiamond based photocathodes for single photon detection in EIC RICH
Identification of high momentum hadrons at the future EIC is crucial, gaseous
RICH detectors are therefore viable option. Compact collider setups impose to
construct RICHes with small radiator length, hence significantly limiting the
number of detected photons. More photons can be detected in the far UV region,
using a windowless RICH approach. QE of CsI degrades under strong irradiation
and air contamination. Nanodiamond based photocathodes (PCs) are being
developed as an alternative to CsI. Recent development of layers of
hydrogenated nanodiamond powders as an alternative photosensitive material and
their performance, when coupled to the THick Gaseous Electron Multipliers
(THGEM)-based detectors, are the objects of an ongoing R\&D. We report about
the initial phase of our studies.Comment: 3 pages, 5 figures, RICH2018 conference proceedin
Efficacy of the treatment of developmental language disorder: A systematic review
Background. Language disorder is the most frequent developmental disorder in childhood and it has a significant negative impact on children’s development. The goal of the present review was to systematically analyze the effectiveness of interventions in children with developmental language disorder (DLD) from an evidence-based perspective. Methods. We considered systematic reviews, meta-analyses of randomized controlled trials (RCTs), control group cohort studies on any type of intervention aimed at improving children’s skills in the phono-articulatory, phonological, semantic-lexical, and morpho-syntactic fields in preschool and primary school children (up to eight years of age) that were diagnosed with DLD.We identified 27 full-length studies, 26 RCT and one review. Results. Early intensive intervention in three- and four-year-old children has a positive effect on phonological expressive and receptive skills and acquisitions are maintained in the medium term. Less evidence is available on the treatment of expressive vocabulary (and no evidence on receptive vocabulary). Intervention on morphological and syntactic skills has effective results on expressive (but not receptive) skills; however, a number of inconsistent results have also been reported. Only one study reports a positive effect of treatment on inferential narrative skills. Limited evidence is also available on the treatment of meta-phonological skills. More studies investigated the effectiveness of interventions on general language skills, which now appears as a promising area of investigation, even though results are not all consistent. Conclusions. The effectiveness of interventions over expressive and receptive phonological skills, morpho-syntactic skills, as well as inferential skills in narrative context underscores the importance that these trainings be implemented in children with DLD
Nanodiamond photocathodes for MPGD-based single photon detectors at future EIC
The design of a Ring Imaging CHerenkov (RICH) detector for the identification
of high momentum particles at the future Electron Ion Collider (EIC) is
extremely challenging by using current technology. Compact collider setups
impose to construct RICH with short radiator length, hence limiting the number
of generated photons. The number of detected photons can be increased by
selecting the far UV region. As standard fused-silica windows is opaque below
165 nm, a windowless RICH can be a possible approach. CsI is widely used
photocathode (PC) for photon detection in the far UV range. Due to its
hygroscopic nature it is very delicate to handle. In addition, its Quantum
Efficiency (QE) degrades in high intensity ion fluxes. These are the key
reasons to quest for novel PC with sensitivity in the far UV region. Recent
development of layers of hydrogenated nanodiamond powders as an alternative PC
material and their performance, when coupled to the THick Gaseous Electron
Multipliers (THGEM)-based detectors, are the objects of an ongoing R\&D. We
report here some preliminary results on the initial phase of these studies.Comment: 6 pages, 5 figures, MPGD-2019 La Rochelle, Proceedin
The high voltage system for the novel MPGD-based photon detectors of COMPASS RICH-1
The architecture of the novel MPGD-based photon detectors of COMPASS RICH-1
consists in a large-size hybrid MPGD multilayer layout combining two layers of
Thick-GEMs and a bulk resistive MICROMEGAS. Concerning biasing voltage, the
Thick-GEMs are segmented in order to reduce the energy released in case of
occasional discharges, while the MICROMEGAS anode is segmented in pads
individually biased at positive voltage, while the micromesh is grounded. In
total, there are ten different electrode types and more than 20000 electrodes
supplied by more than 100 HV channels. Commercial power supply units are used.
The original elements of the power supply system are the architecture of the
voltage distribution net, the compensation, by voltage adjustment, of the
effects of pressure and temperature variation affecting the detector gain and a
sophisticated control software, which allows to protect the detectors against
errors by the operator, to monitor and log voltages and current at 1 Hz rate
and to automatically react to detector misbehaviors. The HV system and its
performance are described in detail as well as the electrical stability of the
detector during the operation at COMPASS.Comment: 5th international conference on Micro-Pattern Gas Detectors
(MPGD2017),presentation by Silvia Dalla Torr
- …