49 research outputs found

    Closing the Nuclear Fuel Cycle with a Simplified Minor Actinide Lanthanide Separation Process (ALSEP) and Additive Manufacturing

    Get PDF
    Expanded low-carbon baseload power production through the use of nuclear fission can be enabled by recycling long-lived actinide isotopes within the nuclear fuel cycle. This approach provides the benefits of (a) more completely utilizing the energy potential of mined uranium, (b) reducing the footprint of nuclear geological repositories, and (c) reducing the time required for the radiotoxicity of the disposed waste to decrease to the level of uranium ore from one hundred thousand years to a few hundred years. A key step in achieving this goal is the separation of long-lived isotopes of americium (Am) and curium (Cm) for recycle into fast reactors. To achieve this goal, a novel process was successfully demonstrated on a laboratory scale using a bank of 1.25-cm centrifugal contactors, fabricated by additive manufacturing, and a simulant containing the major fission product elements. Americium and Cm were separated from the lanthanides with over 99.9% completion. The sum of the impurities of the Am/Cm product stream using the simulated raffinate was found to be 3.2 × 10−3 g/L. The process performance was validated using a genuine high burnup used nuclear fuel raffinate in a batch regime. Separation factors of nearly 100 for 154Eu over 241Am were achieved. All these results indicate the process scalability to an engineering scale

    Ion Recognition Approach to Volume Reduction of Alkaline Tank Waste by Separation of Sodium Salts

    Get PDF
    The purpose of this research involving collaboration between Oak Ridge National Laboratory (ORNL) and Pacific Northwest National Laboratory (PNNL) is to explore new approaches to the separation of sodium hydroxide, sodium nitrate, and other sodium salts from high-level alkaline tank waste. The principal potential benefit is a major reduction in disposed waste volume, obviating the building of expensive new waste tanks and reducing the costs of low-activity waste immobilization. Principles of ion recognition are being researched toward discovery of liquid-liquid extraction systems that selectively separate sodium hydroxide and sodium nitrate from other waste components. The successful concept of pseudohydroxide extraction using fluorinated alcohols and phenols is being developed at ORNL and PNNL toward a greater understanding of the controlling equilibria, role of solvation, and of synergistic effects involving crown ethers. Synthesis efforts are being directed toward enhanced sodium binding by crown ethers, both neutral and proton-ionizable. Studies with real tank waste at PNNL will provide feedback toward solvent compositions that have promising properties

    Investigations Into the Nature of Alkaline Soluble, Non-Pertechnetate Technetium

    Get PDF
    This report summarizes work accomplished in fiscal year (FY) 2013, exploring the chemistry of a low-valence technetium(I) species, [Tc(CO)3(H2O)3]+, a compound of interest due to its implication in the speciation of alkaline-soluble technetium in several Hanford tank waste supernatants. Various aspects of FY 2013’s work were sponsored both by Washington River Protection Solutions and the U.S. Department of Energy’s Office of River Protection; because of this commonality, both sponsors’ work is summarized in this report. There were three tasks in this FY 2013 study. The first task involved examining the speciation of [(CO)3Tc(H2O)3]+ in alkaline solution by 99Tc nuclear magnetic resonance spectroscopy. The second task involved the purchase and installation of a microcalorimeter suitable to study the binding affinity of [(CO)3Tc(H2O)3]+ with various inorganic and organic compounds relevant to Hanford tank wastes, although the actual measure of such binding affinities is scheduled to occur in future FYs. The third task involved examining the chemical reactivity of [(CO)3Tc(H2O)3]+ as relevant to the development of a [(CO)3Tc(H2O)3]+ spectroelectrochemical sensor based on fluorescence spectroscopy

    Development of a Chemistry-Based, Predictive Method for Determining the Amount of Non-Pertechnetate Technetium in the Hanford Tanks: FY 2012 Progress Report

    Get PDF
    This report describes investigations directed toward understanding the extent of the presence of highly alkaline soluble, non-pertechnetate technetium (n-Tc) in the Hanford Tank supernatants. The goals of this report are to: a) present a review of the available literature relevant to the speciation of technetium in the Hanford tank supernatants, b) attempt to establish a chemically logical correlation between available Hanford tank measurements and the presence of supernatant soluble n-Tc, c) use existing measurement data to estimate the amount of n-Tc in the Hanford tank supernatants, and d) report on any likely, process-friendly methods to eventually sequester soluble n-Tc from Hanford tank supernatants
    corecore