199 research outputs found

    Perturbation of gene expression of the chromatin remodeling pathway in premature newborns at risk for bronchopulmonary dysplasia

    Get PDF
    The expression profiles of umbilical cords from premature newborns reveal distinct patterns, including changes in the expression of chromatin remodeling factors, associated with the development of bronchopulmonary dysplasia

    Systemic inflammation associated with mechanical ventilation among extremely preterm infants

    Get PDF
    Little evidence is available to document that mechanical ventilation is an antecedent of systemic inflammation in preterm humans. We obtained blood on postnatal day 14 from 726 infants born before the 28th week of gestation and measured the concentrations of 25 inflammation-related proteins. We created multivariable models to assess the relationship between duration of ventilation and protein concentrations in the top quartile. Compared to newborns ventilated for fewer than 7 days (N=247), those ventilated for 14 days (N=330) were more likely to have elevated blood concentrations of pro-inflammatory cytokines (IL-1β, TNF-α), chemokines (IL-8, MCP-1), an adhesion molecule (ICAM-1), and a matrix metalloprotease (MMP-9), and less likely to have elevated blood concentrations of two chemokines (RANTES, MIP-1β), a matrix metalloproteinase (MMP-1), and a growth factor (VEGF). Newborns ventilated for 7-13 days (N=149) had systemic inflammation that approximated the pattern of newborns ventilated for 14 days. These relationships were not confounded by chorioamnionitis or antenatal corticosteroid exposure, and were not altered appreciably among infants with and without bacteremia. These findings suggest that two weeks of ventilation are more likely than shorter durations of ventilation to be accompanied by high blood concentrations of pro-inflammatory proteins indicative of systemic inflammation, and by low concentrations of proteins that might protect from inflammation-mediated organ injury

    Early Postnatal IGF-1 and IGFBP-1 Blood Levels in Extremely Preterm Infants: Relationships with Indicators of Placental Insufficiency and with Systemic Inflammation

    Get PDF
    OBJECTIVE: To evaluate to what extent indicators of placenta insufficiency are associated with low concentrations of insulin-like growth factor 1 (IGF-1) and IGF-1-binding protein-1 (IGFBP-1) in neonatal blood, and to what extent the concentrations of these growth factors are associated with concentrations of proteins with inflammatory, neurotrophic, or angiogenic properties. STUDY DESIGN: Using multiplex immunoassays, we measured the concentrations of IGF-1 and IGFBP-1, as well as 25 other proteins in blood spots collected weekly from≥880 infants born before the 28th week of gestation, and sought correlates of concentrations in the top and bottom quartiles for gestational age and day the specimen was collected. RESULTS: Medically indicated delivery and severe fetal growth restriction (sFGR) were associated with low concentrations of IGF-1 on the first postnatal day and with high concentrations of IGFBP-1 on almost all days. Elevated concentrations of IGF-1 and IGFBP-1 were accompanied by elevated concentrations of many other proteins with inflammatory, neurotrophic, or angiogenic properties. CONCLUSION: Disorders associated with impaired placenta implantation and sFGR appear to account for a relative paucity of IGF-1 on the first postnatal day. Elevated concentrations of IGF-1 and especially IGFBP-1 were associated with same-day elevated concentrations of inflammatory, neurotrophic, and angiogenic proteins

    Neurocognitive and Academic Outcomes at Age 10 Years of Extremely Preterm Newborns

    Get PDF
    Despite reductions in mortality and morbidity among children born extremely preterm, they remain at high risk of neurocognitive deficits, with up to 40% having significant cognitive deficits at school age. We assessed the rate of neurocognitive impairment in a contemporary US cohort of 873 children aged 10 years who were born <28 weeks’ gestation

    Behavioural dysfunctions of 10-year-old children born extremely preterm associated with corticotropin-releasing hormone expression in the placenta

    Get PDF
    AIM: To evaluate the relationship between corticotropin-releasing hormone (CRH) expression in the placenta and the risk of school-related dysfunctions at the age of 10 years among children born extremely preterm (EP). METHODS: Corticotropin-releasing hormone expression was measured in the placenta of 761 EP children, who had the following assessments at the age of 10 years: Differential Ability Scales, Oral and Written Language Scales, the Wechsler Individual Achievement Test-III, NEPSY-II and the Child Symptom Inventory-4. We evaluated whether lowest and highest quartiles of CRH mRNA were associated with undesirable scores on these assessments. With 272 evaluations, we would expect 14 to be significant at p < 0.05. RESULTS: Only 16 associations were statistically significant. On the other hand, seven of these were social limitations among girls whose placenta CRH mRNA was in the top quartile. Adjusting for delivery indication or restricting the sample to one delivery indication group resulted in few differences. CONCLUSION: Overall, placenta CRH mRNA concentrations in the top or bottom quartiles were not associated with increased risks of dysfunctions 10 years later. Girls whose placenta CRH expression was in the top quartile, however, were at increased risk of seven indicators/correlates of social limitations
    corecore