176 research outputs found

    Strain-induced phase transformation under compression in a diamond anvil cell: Simulations of a sample and gasket

    Get PDF
    Combined high pressure phase transformations (PTs) and plastic flow in a sample within a gasket compressed in diamond anvil cell (DAC) are studied for the first time using finite element method. The key point is that phase transformations are modelled as strain-induced, which involves a completely different kinetic description than for traditional pressure-induced PTs. The model takes into account, contact sliding with Coulomb and plastic friction at the boundaries between the sample, gasket, and anvil. A comprehensive computational study of the effects of the kinetic parameter, ratio of the yield strengths of high and low-pressure phases and the gasket, sample radius, and initial thickness on the PTs and plastic flow is performed. A new sliding mechanism at the contact line between the sample, gasket, and anvil called extrusion-based pseudoslip is revealed, which plays an important part in producing high pressure. Strain-controlled kinetics explains why experimentally determined phase transformation pressure and kinetics (concentration of high pressure phase vs. pressure) differ for different geometries and properties of the gasket and the sample: they provide different plastic strain, which was not measured. Utilization of the gasket changes radial plastic flow toward the center of a sample, which leads to high quasi-homogeneous pressure for some geometries. For transformation to a stronger high pressure phase, plastic strain and concentration of a high-pressure phase are also quasi-homogeneous. This allowed us to suggest a method of determining strain-controlled kinetics from experimentation, which is not possible for weaker and equal-strength high-pressure phases and cases without a gasket. Some experimental phenomena are reproduced and interpreted. Developed methods and obtained results represent essential progress toward the understanding of PTs under compression in the DAC. This will allow one optimal design of experiments and conditions for synthesis of new high pressure phases

    Plastic flows and phase transformations in materials under compression in diamond anvil cell: Effect of contact sliding

    Get PDF
    Modeling of coupled plastic flows and strain-induced phase transformations (PTs) under high pressure in a diamond anvil cell is performed with the focus on the effect of the contact sliding between sample and anvils. Finite element software ABAQUS is utilized and a combination of Coulomb friction and plastic friction is considered. Results are obtained for PTs to weaker, equal-strength, and stronger high pressure phases, using different scaling parameters in a strain-controlled kinetic equation, and with various friction coefficients. Compared to the model with cohesion, artificial shear banding near the constant surface is eliminated. Sliding and the reduction in friction coefficient intensify radial plastic flow in the entire sample (excluding a narrow region near the contact surface) and a reduction in thickness. A reduction in the frictioncoefficient to 0.1 intensifies sliding and increases pressure in the central region. Increases in both plastic strain and pressure lead to intensification of strain-induced PT. The effect of self-locking of sliding is revealed. Multiple experimental phenomena are reproduced and interpreted. Thus, plastic flow and PT can be controlled by controlling friction

    Tensorial stress-plastic strain fields in α\alpha-ω\omega Zr mixture, transformation kinetics, and friction in diamond anvil cell

    Full text link
    Various phenomena (phase transformations, chemical reactions, and friction) under high pressures in diamond anvil cell are strongly affected by fields of all components of stress and plastic strain tensors. However, they could not be measured. Even measured pressure distribution contains significant error. Here, we suggest coupled experimental-analytical-computational approaches utilizing synchrotron X-ray diffraction, to solve an inverse problem and find all these fields and friction rules before, during, and after α\alpha-ω\omega phase transformation in strongly plastically predeformed Zr. Due to advanced characterization, the minimum pressure for the strain-induced α\alpha-ω\omega phase transformation is changed from 1.36 to 2.7 GPa. It is independent of the compression-shear path. The theoretically predicted plastic strain-controlled kinetic equation is verified and quantified. Obtained results open opportunities for developing quantitative high-pressure/stress science, including mechanochemistry, material synthesis, and tribology.Comment: 45 page

    Strain-induced phase transformations under compression, unloading, and reloading in a diamond anvil cell

    Get PDF
    Strain-induced phase transformations (PTs) in a sample under compression, unloading, and reloading in a diamond anvil cell are investigated in detail, by applying finite element method. In contrast to previous studies, the kinetic equation includes the pressure range in which both direct and reverse PTs occur simultaneously. Results are compared to the case when “no transformation” region in the pressure range exists instead, for various values of the kinetic parameters and ratios of the yield strengths of low and high pressure phases. Under unloading (which has never been studied before), surprising plastic flow and reverse PT are found, which were neglected in experiments and change interpretation of experimental results. They are caused both by heterogeneous stress redistribution and transformation-induced plasticity. After reloading, the reverse PT continues followed by intense direct PT. However, PT is less pronounced than after initial compression and geometry of transformed zone changes. In particular, a localized transformed band of a weaker high pressure phase does not reappear in comparison with the initial compression. A number of experimental phenomena are reproduced and interpreted

    Coupled phase transformations and plastic flows under torsion at high pressure in rotational diamond anvil cell: Effect of contact sliding

    Get PDF
    A three-dimensional large-sliding contact model coupled with strain-induced phase transformations (PTs) and plastic flow in a disk-like sample under torsion at high pressure in rotational diamond anvil cell (RDAC) is formulated and studied. Coulomb and plastic friction are combined and take into account variable parameters due to PT. Results are obtained for weaker, equal-strength, and stronger high pressure phases, and for three values of the kinetic coefficient in a strain-controlled kinetic equation and friction coefficient. All drawbacks typical of problem with cohesion are overcome, including eliminating mesh-dependent shear band and artificial plastic zones. Contact sliding intensifies radial plastic flow, which leads to larger reduction in sample thickness. Larger plastic strain and increased pressure in the central region lead to intensification of PT. However, the effect of the reduction in the friction coefficient on PT kinetics is nonmonotonous. Sliding increases away from the center and with growing rotation and is weakly dependent on the kinetic coefficient. Also, cyclic back and forth torsion is studied and compared to unidirectional torsion. Multiple experimental phenomena, e.g., pressure self-multiplication effect, steps (plateaus) at pressure distribution, flow to the center of a sample, and oscillatory pressure distribution for weaker high-pressure phase, are reproduced and interpreted. Reverse PT in high pressure phase that flowed to the low pressure region is revealed. Possible misinterpretation of experimental PT pressure is found. Obtained results represent essential progress toward understanding of strain-induced PTs under compression and shear in RDAC and may be used for designing experiments for synthesis of new high pressure phases and reduction in PT pressure for known phases, as well as for determination of PT kinetics from experiments

    Sublimation inside an Elastoplastic Material

    Full text link

    Modeling and simulation of strain-induced phase transformations under compression and torsion in a rotational diamond anvil cell

    Get PDF
    Strain-induced phase transformations (PTs) under compression and torsion in rotational diamond anvils are simulated using a finite-element approach. Results are obtained for three ratios of yield strengths of low-pressure and high-pressure phases and are compared with those for the compression without torsion from Levitas and Zarechnyy Phys. Rev. B 82 174123 (2010). Various experimental effects are reproduced, including a pressure self-multiplication effect, plateau at pressure distribution at the diffuse interface, simultaneous occurrence of direct and reverse PTs, and irregular stress distribution for PT to a weaker phase. The obtained results change the fundamental understanding of strain-induced PT in terms of interpretation of experimental measurements and the extracting of information on material processes from sample behavior. Intense radial plastic flow moves the high-pressure phase to the low-pressure region, which may lead to misinterpretation of measurements. Various interpretations based on a simplified equilibrium equation (for example, about zero yield strength of phase mixture and hydrostatic conditions during PT) appears to be wrong because of inapplicability of this equation for cases with large gradients of phase concentration and yield strength. The approach developed represents a tool for designing experiments for different purposes and for controlling PTs, and it opens unexpected ways to extract material information by combining simulation and experiment.This article is from Physical Review B 82 (2010): 174124, doi:10.1103/PhysRevB.82.174124. Posted with permission.</p
    corecore