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Strain-induced phase transformations (PTs) under compression and torsion in rotational diamond anvils are
simulated using a finite-element approach. Results are obtained for three ratios of yield strengths of low-
pressure and high-pressure phases and are compared with those for the compression without torsion from
Levitas and Zarechnyy [Phys. Rev. B 82, 174123 (2010)]. Various experimental effects are reproduced,
including a pressure self-multiplication effect, plateau at pressure distribution at the diffuse interface, simul-
taneous occurrence of direct and reverse PTs, and irregular stress distribution for PT to a weaker phase. The
obtained results change the fundamental understanding of strain-induced PT in terms of interpretation of
experimental measurements and the extracting of information on material processes from sample behavior.
Intense radial plastic flow moves the high-pressure phase to the low-pressure region, which may lead to
misinterpretation of measurements. Various interpretations based on a simplified equilibrium equation (for
example, about zero yield strength of phase mixture and hydrostatic conditions during PT) appears to be wrong
because of inapplicability of this equation for cases with large gradients of phase concentration and yield
strength. The approach developed represents a tool for designing experiments for different purposes and for
controlling PTs, and it opens unexpected ways to extract material information by combining simulation and

experiment.
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I. INTRODUCTION

In Ref. 1, we developed a model and a finite-element
approach for studying strain-induced phase transformations
(PTs) in rotational diamond anvil cell. The axisymmetric
problem of simulation of strain-induced PTs under compres-
sion in traditional diamond anvils was solved and various
cases were analyzed. Here, we will apply the same model for
the solution of three-dimensional (3D) problems of simula-
tion of strain-induced PTs under compression and torsion in
rotational diamond anvils, which are usually utilized for
studying the effect of plastic shear on high-pressure PTs. The
paper is organized as follows. In Sec. II, problem formula-
tion, including boundary conditions, is presented. In Sec. III,
solutions for three different ratios of the compressive yield
strength of the high-pressure phase to that of the low-
pressure phase, o,/ 0y, equal to 1, 5, and 0.2, are described
and analyzed. In Sec. IV, the PT Kkinetics, stress tensor, and
plastic strain fields for the cases under compression and com-
pression with torsion are compared for the same ratios of the
yield strengths. Comparison with a simplified model is pre-
sented in Sec. V, and comparison with and interpretation of
available experimental data can be found in Sec. VI. Section
VII contains concluding remarks.

II. PROBLEM FORMULATION

The problem formulation is very similar to that for the
case without PTs (Refs. 2 and 3) and with PT under
compression.! The axisymmetric geometry of an anvil and
sample as well as axisymmetric problem formulation in a
cylindrical coordinate system rz¢ will be utilized, along with
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3D loading. Due to symmetry with respect to the plane z
=0 passing through the center of a sample, a quarter of a
cross section of a sample before deformation is shown in Fig.
1(b). The initial thickness of a sample between the flat dia-
mond surface Hy=0.2R, where R is the anvil radius; the ini-
tial thickness of the free part of the sample H=2H,,. To avoid
any influence of the edge of the sample, the external radius
of the sample is chosen as 3R. The sample is compressed by
the increasing axial force Q and then the torsion of an anvil
by an angle ¢ with respect to another anvil was applied
under Q=constant. Initial values of all stresses, strains, con-
centration of the high-pressure phase, and displacements are
chosen to be zero. The following boundary conditions are
applied [Fig. 1(c)]: (1) at the axis OB (r=0), the radial shear
stress 7.,=0 and radial displacement u,=0. (2) At the plane
of symmetry BC z=0, the radial shear stress 7,,=0, the axial
displacements u,=0, and the twisting displacements u4=0.
(3) At the contact surface OKD between rigid diamond and
compressed material, all displacements of the sample are
equal to the displacement of the anvil, i.e., complete cohe-
sion between anvil and sample is assumed. Compressive
axial force Q increasing from zero to the final value was
applied to the rigid anvil and was kept constant during rota-
tion of an anvil (and consequently a sample) by an angle ¢/2
with respect to symmetry plane z=0. The cohesion condition
along the rigid surface OKD results in the condition that
axial displacement u, and rotation angle ¢/2 are the same for
each point of the sample’s contact surface, and radial dis-
placement u,=0. (4) At the deformed free surfaces DM and
MN, the traction vector #,=0.

Below, we analyze the complete cohesion condition.?
When the pressure exceeds 20,, asperities of the diamond
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penetrate into a deformed sample, which leads to complete
cohesion between diamond and sample. However, when the
magnitude of the shear friction stress, 7, along the sample-
anvil interface, 7=y 7§z+ Tf¢, reaches the yield strength in
shear of the two-phase mixture, 7,(c)=0,(c)/\3 (according
to the von Mises yield condition), the relative sliding is lo-
calized just below the contact surface within a thin layer of a
sample material. Here, ¢ is the volume fraction of the high-
pressure phase and the yield stress in compression of the
two-phase mixture is o,(c)=(1~-c)oy,+coy,. This is equiva-
lent to the following sliding condition in the immediate vi-
cinity of the contact surface:

L

o] for 7=7,(c),

v=0 for 7<7/(c). (1)

K]

Here, v is the vector of particles velocity along the contact
surface. In Eq. (1), the collinearity of v and 7 is a conse-
quence of isotropy of the plasticity condition. Equation (1) is
the particular case of the general contact sliding equation for
an anisotropic material.* The large elastoplastic deformation
and coupled thermomechanical subroutines of the finite-
element method (FEM), and the FEM code ABAQUS was
implemented in a way similar to that in Ref. 1. All stresses
are normalized by the yield strength in the compression of
the low-pressure phase oy, e.g., 0.,=0,./ 0, and p=p/a,,.
Dimensional applied axial force is defined as F=Q/(Say;)
with S for the initial contact area OKD between an anvil and
a sample. For convenience, in figures shear stresses are di-
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vided by the yield strength in shear Ty1=0y1/\s‘§, e.g., T,
=1,,/7,). The same dimensionless material parameters as in
Ref. 1 were utilized in calculations: £,=0.1, Young’s modu-
lus E=162.5, Poison’s ratio »=0.3, p?=6.75, p’=6.375, p
=11.25, p;=1.875, and a;=0.1. Note that contour lines of
equal values of the normal stresses o, and o,, and shear
stresses 7,, and 7,4, as well as distributions of the normal
stresses o, and o,, along the flat contact surface are pre-
sented in supplementary material.®

III. PHASE TRANSFORMATIONS UNDER TORSION AT
CONSTANT AXIAL FORCE

A. Phase transformations for the case with equal yield
strengths of phases

We will discuss PTs under torsion at constant axial force
F=4.44 after compression for oy,=0,,, see Figs. 2 and 3.
The thickness of the sample significantly reduces during tor-
sion (see also Fig. 14), which increases the accumulated
plastic strain ¢ in addition to torsion. The maximum g is
concentrated at the contact surface and strongly grows with
growing radius. An increase in the angle of rotation from ¢
=0 to ¢=0.04 and then to ¢=1.58 leads to the increase in the
maximum value of g from 3.2 to 9.4 and then to 151.8.
While the value of accumulated plastic strain is much higher
at the surface of the sample than in the middle of the sample,
PT will not start until the pressure reaches the minimum
pressure pg for direct PT. Excluding the central region of a
sample, pressure grows practically linearly along the radius
of the sample from the edge toward the center and does not
change appreciably during rotation [similar to the case with-
out PTs (Ref. 3)].

In all figures with pressure fields in a sample [see, e.g.,
Fig. 2(c)] pressure range p.,<p<p< in which neither direct
nor reverse PTs are possible, is shown in magenta. The con-
tours of this region are also shown in all other figures with
concentration fields in a sample. In the region to the left of
the magenta region, where pressure p > p(é, direct PT occurs;
in the region with p<p’, the reverse PT takes place. In con-
trast to the compression stage, torsion leads to significant
radial flow of a newly formed high-pressure phase into the
region with p<<p;, where reverse PT takes place; even a
completely transformed high-pressure phase is visible in the
region with p<p’ in Fig. 2(a). Thus, both direct and reverse
PTs occur simultaneously in different parts of a sample. Also,
since a high-pressure phase can be experimentally found in
the region well below p‘é, a wrong conclusion about a signifi-
cant (larger than in reality) reduction in PT pressure can be
drawn. This is especially important if the kinetics of the re-
verse strain-induced PT is much slower than that for the
direct PT [e.g., as in the case with PT between the graphite-
like and superhard phases of boron nitride (BN)].

After compression, a small amount of the high-pressure
phase appeared in the center of a sample [Figs. 2(a) and
3(b)]. During torsion, the second maximum in ¢ appears at
the surface of the sample and PT completes in these two
regions. Then PT completes between these regions and also
propagates to the periphery of a sample. The effect of radial
flow can be further elaborated if we compare Figs. 2(a) and
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FIG. 2. (Color online) (a) Distributions of concentration of high-pressure phase ¢, (b) accumulated plastic strain ¢, and (c) pressure p in
a quarter of a cross section of the sample for the case with o,,=0, for dimensionless applied axial force F'=4.44 and different values of
angle of rotation ¢. Pressure range p. <p < ps is shown in magenta. The contours of this region are duplicated in Fig. 2(a), for concentration,
similar to all other figures with concentration fields in a sample. Maximum values of accumulated plastic strain g for each of six compression
stages are shown near color legend. The same is shown in all other figures with pressure and accumulated plastic strain fields in a sample.
1: ¢=0.04, 2: ¢=0.14, 3: ¢=0.34, 4: ¢=0.78, 5: ¢=1.16, and 6: ¢=1.58.

3(b) in the region near the contact surface. It follows from
Fig. 3(b) that the evolution of distribution c(r) occurs in the
same region where p > p‘; because pressure does not change
essentially and radial displacement is prohibited at the con-
tact surface. The concentration ¢ grows, reaches 1, and then
the region of complete high-pressure phase spreads in both
directions, forming quite sharp interfaces. At the same time,
Fig. 2(a) demonstrates that the region with complete PT just
below the contact surface, significantly moved to the periph-
ery of a sample (where pressure is well below that of p‘é and
pL), because of significant shear strain and displacement lo-
calization below the contact surface. Thus, while analysis of
p(r) and c distributions along the contact surface may lead to
the conclusion that at a diffuse interface the pressure corre-
sponds to the range between pg and p. (which can be used
for experimental determination of these parameters), distri-
bution of the same fields in the sample volume shows that
this is not the case at all. If the high-pressure phase has a
different color (as in for BN and KCl), visible interface cor-
responds to Fig. 2(a) and does not correlates with the region
where pZ> p>pt. Thus, since pressure distribution does not
show any plateau or other signatures of PT, it is very difficult

to determine kinetic parameters pfj and p} from experiment
for this case.

During torsion, torsional shear stress Tr increases, almost
homogeneously for 0.4 <<r/R<1 at the initial stages of rota-
tion of an anvil, then the homogeneous region spreads almost
over the entire contact surface, excluding the small central
part [Fig. 3(d)]. In fact, 7,, is getting quite homogeneous
along the z coordinate as well [Fig. S1d]. Radial shear stress

-, along the most part of the contact surface decreases with
the increasing of the angle of rotation. This is because the
magnitude of friction shear stress vector 7=\ 7f¢+ 7‘3, reached
the yield strength in shear 7, and the increase in shear twist-
ing stress 7,, implies the reductlon in 7, [Fig. 3(c)]. Only in
the small region near the sample center, where 7<7, does 7.
grow with growing rotation, causing a small increase in pres-
sure.

To summarize, the most important result in this section is
as follows. Significant reduction in thickness of the sample
during torsion with a practically unchanged pressure field
leads to intense radial plastic flow that moves the high-
pressure phase in the region with pressure below p’sj and even
p.. Thus, simultaneous direct and reverse PTs occur in dif-
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FIG. 3. (Color online) (a) Distributions of pressure p, (b) con-
centration of high-pressure phase ¢, (c) shear stress 7., and (d)
shear stress 7,, along the radius of the contact surface of a sample
r for the case with o,,=0, for dimensionless applied axial force
F=4.44 and different values of angle of rotation ¢. 1: ¢=0.04, 2:
¢=0.14, 3: ¢=0.34, 4: ¢=0.78, 5: ¢=1.16, and 6: ¢=1.58. Dia-
monds ¢ designate two points of straight line according to Eq. (2).

ferent regions of a sample. Observation of the high-pressure
phase in the low-pressure region due to convective flow can
lead to misinterpretation of experimental results. Since pres-
sure distribution does not show any signature of PT, it is very
difficult to determine kinetic parameters pg and p;, from ex-
periment.

B. Phase transformations to a stronger high-pressure phase

We will discuss the results of simulation of PT induced by
torsion under fixed axial force F'=4.44 when o,=50,;, see
Figs. 4 and 5. Qualitatively, the character of evolution of
distribution of accumulated plastic strain with growing rota-
tion angle [Fig. 4(b)] is similar to the case with equal
strength of the phases. However, due to strengthening of the
material during the PT, reduction in the sample thickness is
slightly lower (Fig. 14), and with the increase of the angle of
rotation from ¢=0.09 to ¢=1.30, the maximum value of ¢
grows from 12.2 to 88.3, i.e., to the values lower than for
equal o,. At the same time, pressure (and all normal stresses)
grow significantly in the transforming region where p> p‘j,
despite the volume decrease due to PT. This is similar to the
experimentally observed pressure self-multiplication effect
for KCI and fullerene Cy.%~° The reduction in thickness due
to torsion compensates the transformation-induced volume
decrease and higher yield strength leads to an increase in
radial friction stresses, and, consequently, to pressure
growth. This result does not contradict the Le Chatelier prin-
ciple of classical equilibrium thermodynamics because it is
not applicable to nonhomogeneous, strain-induced PTs. This
pressure increase during PT accelerates PT kinetics and
serves as a positive mechanochemical feedback. A pressure
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increase in the central part of the sample at constant axial
force leads to a slight pressure decrease in the nontrans-
formed part of the sample, which area is much larger than
that for the transforming part. Pressure and all normal
stresses grow almost linearly along the contact surface with
different slopes in the nontransforming and transforming re-
gions. A clear plateau (step) at the pressure distribution [Fig.
5(a)] in the region of diffuse interface between phases is
formed, similar to that in experiments.” Pressure at a step
slightly varies between p? and p”, and this result allows us to
approximately identify these two key material parameters
from experiments with the rotation of an anvil. Similar pla-
teaus are observed in the distribution of normal stresses o,
and o,, (see Figs. S5a and S5b in Ref. 5). The character of
the pressure contour lines [Fig. 4(c)] does not change with
rotation and that pressure at the symmetry plane is always
slightly lower than at the contact surface. The region without
strain-induced PT (with magenta color) practically does not
move during torsion, with the exception of the near contact
region, where a plateau in pressure distribution is formed.

The distribution ¢(r,z) [Fig. 4(a)] is qualitatively also
similar to the case with o,;=0y,. One difference is that PT
first completes at the contact surface. Radial plastic flow
moves the high-pressure phase in the region with p<pl,
where reverse PT starts. Finding in experiment a high-
pressure phase at low pressure may lead to misinterpretation
of experimental data and a claim of PT pressure below actual
value, similar to the case with oy,=0,,.

Radial 7,, and torsional 7,, shear stresses [Figs. 5(c) and
5(d)] along the contact surface in the nontransformed region
are homogeneous; an increase in 7,, is accompanied by a
decrease in 7,, to keep 7=\ Tf¢+ T§r=7'y1, as in the previous
case. In the transforming region, 7,, grows due to both an
increase in rotation angle (as for the case with oy,=0,,) and
an increase in the yield strength during the PT. These two
factors change the radial 7,, in opposite directions. For the
initial rotation stage, 7,, increases due to the increase in the
yield strength. Then, PT is completed at the contact surface,
the magnitude 7 reaches the yield strength 7,, and 7, de-
creases (excluding the small region near the sample center)
due to the increase in 7,,.

To summarize, the main features of the simulation for the
case 0,,=50,; are: (1) reproduction of the pressure self-
multiplication effect that was observed experimentally;®= (2)
reproduction of the plateau at the pressure (in fact, all normal
stresses) distribution along the contact surface that was ob-
served experimentally;®~ (3) this plateau corresponds to the
diffuse interface between the phases; (4) pressure at the pla-
teau varies between pg and p’ and can be used to determine
these important pressures from experiment. Thus, for KCI,
pgz p.=1.8 GPa, based on data in Ref. 7; and (5) radial
plastic flow (however, less intense than for the case with
0,,=0,;) moves the high-pressure phase in the region with
p<p., leading to reverse PT and possible misinterpretation
of experimental data, similar to the case with o,=0y,.

C. Phase transformations to a weaker high-pressure phase

Results for the case with o,,=0.20,,; are significantly dif-
ferent from both previous cases, see Figs. 6 and 7. The gen-
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FIG. 4. (Color online) (a) Distributions of concentration of high-pressure phase ¢, (b) accumulated plastic strain ¢, and (c) pressure p for
the case with 0,,=50, for dimensionless applied axial force F'=4.44 and different values of angle of rotation ¢. 1: ¢=0.09, 2: ¢=0.38, 3:

©=0.61, 4: ¢=0.94, 5: ¢=1.10, and 6: ¢=1.30.

eral trend of evolution of all fields is governed by the soft-
ening of material during the PT, leading to material
instability and strain and concentration localization in some
regions. Instability leads to an irregular character of distribu-
tion of all fields. PT is not completed in the entire central
part of the sample. Both plastic strain and concentration of
high-pressure phase are localized in two regions: near the
contact surface for r/R>0.36 and near the symmetry plane
for r/R<<0.11. In these regions, PT is completed at a very
early stage of rotation ¢ <<0.09. The regions with complete
PT are always separated, because the magenta region, in
which strain-induced PT is impossible, lies between them. In
fact, this region has quite complex, multiconnected geom-
etry. After transformed material is moved by radial plastic
flow in the region with p<p., reverse PT occurs quite fast
because plastic strain is concentrated in these weak regions.

Large plastic strain spreading across the entire sample thick-
ness [Fig. 6(b), frame 4) is an evidence of convective flow of
the weak partially or completely transformed regions.

In the nontransformed region, pressure and all normal
stresses do not change appreciably during the torsion. Along
the contact surface [Fig. 7(b)], PT mostly develops and com-
pletes in the growing ring. In this region, pressure evolves in
an irregular way, exhibiting oscillations close to the value pg,
which can be used to determine this parameter from the ex-
periment. After the completion of the PT, pressure grows in
this region. In the central region of a sample, pressure re-
duces at the initial stage of rotation, producing plateaus cor-
responding to p‘gj, then to p., and decreasing further causes
reverse PT. Due to these results, it is difficult to extract in-
formation about p? and/or p! in this region. At further rota-
tion, pressure increases in the central region, without essen-

174124-5



VALERY I. LEVITAS AND OLEG M. ZARECHNYY

0 0.2 0.4 0.6 0.8 /R 0 0.2 0.4 0.6 0.8 R

FIG. 5. (Color online) (a) Distributions of pressure p, (b) con-
centration of high-pressure phase ¢, (c) shear stress 7., and (d)
shear stress 7,, along the radius of the contact surface of a sample
r for the case with 0,,=507, for dimensionless applied axial force
F=4.44 and different values of angle of rotation ¢ in a quarter of
cross section of the sample. 1: ¢=0.09, 2: ¢=0.38, 3: ¢=0.61, 4:
¢=0.94, 5: ¢=1.10, and 6: ¢=1.30. Diamonds ¢ designate two
points of straight lines for o, =0, and o= 0, according to Eq. (2).

tial PT, due to low plastic strain. Since normal stresses
almost do not vary in the peripheral part of the sample
(which mostly contributes to the axial force) and vary only a
little at the center, the curve of reduction in the sample thick-
ness versus rotation angle is the same as for the constant
yield strength (Fig. 14).

Shear stresses at the contact surface vary in a very hetero-
geneous and oscillatory way [see Figs. 7(c) and 7(d), and S3,
¢ and d]. In the nontransformed part of a sample, these
stresses are quasihomogeneous, Trp increases, and 7, de-
creases to keep the magnitude of the friction shear stress
vector 7=1,; constant, similar to the previous cases. In the
region of low-strength phase, both shear stresses are getting
much lower to satisfy condition 7=7,,.

Summarizing, there is strong localization of plastic strain
and concentration of the high-pressure phase, when it is sig-
nificantly weaker than the low-pressure phase. This instabil-
ity leads to the irregular character of all stress and concen-
tration fields. It is not a numerical error, because such
irregular pressure fields are observed experimentally for
ZnSe (Fig. S9) Refs. 5 and 10) and Cul,!! in contrast to the
smooth pressure distribution for KCI (Refs. 7 and 8) and
fullerene.®? There are several plateaus in the pressure distri-
bution, the pressure at which varies during torsion and PT;
some of them are related to the characteristic pressures p*
and/or p, for some rotation angles, and others are not. That is
why it is very difficult to determine these parameters from
experiments. Due to localized PT, the total amount of trans-
formed material in the sample is smaller than for the two
previous cases. The change in thickness versus rotation angle
is the same as for the constant yield strength.
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IV. COMPARISON OF PHASE TRANSFORMATIONS
UNDER COMPRESSION AND TORSION
AT CONSTANT FORCE

Comparisons of the fields and distribution curves along
the contact surface after compression and after torsion for
three yield-strength ratios are presented in Figs. 8—13. Tor-
sion was performed at force F'=4.44 and compression with-
out torsion was performed at the same pressure at the sample
center as it was for torsion. For all cases, PT starts at the
center of the sample, where pressure first exceeds pf and
where some strain localization occurs along the slip line.
Another local maximum in ¢ appears along the contact sur-
face in the region with very large plastic strain. Note that
strain-induced PTs occur for both loadings. Thus, the phys-
ics, thermodynamics, and kinetics are the same, with only
the p-g paths at each point differing.

A. Comparison for equal yield strengths of phases

Compression was performed at forces F=4.46, 5.04, and
5.43, to be compared with the force F=4.44 for torsion. Tor-
sion promotes the growth of the accumulated plastic strain g
[Fig. 8(c)] in the sample (by a factor of 3—15), which in turn
promotes the PT. Thus, with the increase in pressure at the
center from 8.4 to 10.2 due to compression, the maximum
value of g grows from 3.3 to 9.2. During torsion from ¢
=0.04 to 1.57, the maximum value of ¢ increases from 9.4 to
151.8. More important for PT is that during torsion g grows
significantly not along the contact surface only but also in
the interior of the sample.

For both regimes, almost linear growth of the pressure
along the radius of the contact surface without any noticeable
plateau in the area of phase interface is observed [Figs. 8(a)
and 9(a)]. During torsion, the pressure slightly increases at
the center and reduces at the periphery, without visible
changing of the magenta region with pfof> p>p.. Due to in-
tense reduction in sample thickness, the high-pressure phase
flows to the region with p<<p., and reverse PT occurs. In
contrast, during compression pressure increases everywhere
(due to an increase in applied force), and therefore the region
where direct PT occurs expands. The reduction in thickness
is less intense, and the high-pressure phase does not reach
the region with p<<pl; therefore, reverse PT never takes
place.

Torsion drastically intensifies the PT [Figs. 8(b) and 9(b)]
and leads to its completion in practically the entire region
with r/R=0.48 at ¢=1.57. In contrast, under compression
with the higher force F'=5.43, maximum concentration of the
high-pressure phase does not exceed 0.6, while PT is spread
to r/r=0.65. We have to increase force at least to 6.73,
corresponding to a pressure at the center of 14.3, to obtain
complete PT in some central region of a sample (see Figs. 2
and 4 in Ref. 1). This region is significantly smaller than the
region with p> p‘E], in which PT completes near the contact
surface only, because of much smaller plastic strain below
the contact surface.

As was mentioned in Sec. III A, due to intense radial
plastic flow, the lack of any PT signature in the pressure
distribution, and the lack of correlation between the interface
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FIG. 6. (Color online) (a) Distributions of concentration of high-pressure phase ¢, (b) accumulated plastic strain ¢, and (c) pressure p for
the case with 0,,=0.207, for dimensionless applied axial force F=4.44 (except 1) and different values of angle of rotation ¢. 1: F=4.30,

©=0.0, 2: =0.09, 3: ¢=0.20, 4: ¢=0.64, 5: ¢=0.84, and 6: @=1.40.

between phases and the characteristic pressures p? and p’, it
is very difficult to determine these parameters from experi-
ment for this case. It is also difficult for the compression
regime. However, because of smaller reduction in sample
thickness and less-developed radial flow, for any compres-
sion stage, pressure at the contact surface at the point where
PT starts corresponds to the characteristic pressure pf. This
correspondence is more robust for large forces, when PT is
complete (see Figs. 2 and 4 in Ref. 1). This may allow us to
determine pj in experiment. However, we do not see any
way to find p? for this case experimentally.

Summarizing, torsion significantly intensifies PT and al-
lows us to complete PT (at the same contact pressure on the
symmetry axis) at significantly lower axial force than for
compression. The transforming region, however, is smaller
than for compression, due to both a smaller region with p
> p‘sj and a larger reduction in sample thickness. When com-
paring with results for compression at the same axial force
(Fig. 2 in Ref. 1), torsion allows us to complete PT (Fig. 9)

almost in the entire region with p > p’sj. Pressure at the center
of a sample is significantly higher than p‘sl but it grows
slightly only during torsion.

B. Comparison for phase transformation to a
stronger high-pressure phase

Torsion increases the Odqvist parameter ¢ in the sample
by a factor of 2-5 in comparison with compression [Fig.
10(c)]. With an increase in pressure (without torsion) from
12.4 to 20.1, q,.c grows from 7.7 to 16.5. With a similar
increase in pressure due to the torsion ¢,,,, increases from
18.3 to 76.3. Torsion also leads to a significant increase in g
in the interior of the sample, which allows us to complete PT
in almost the entire region where p > pZ. During the torsion,
pressure strongly increases [Figs. 10(a) and 11(a)] in the
transforming region only (due to an increase in the yield
strength) and slightly decreases in the nontransforming area
(to keep the same axial force). The transforming region prac-
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FIG. 7. (Color online) (a) Distributions of pressure p, (b) con-
centration of high-pressure phase ¢, (c) shear stress 7., and (d)
shear stress 7,, along the radius of the contact surface of a sample
r for the case with 0,=0.20, for dimensionless applied axial force
F=4.44 (except 1) and different values of angle of rotation ¢. I:
F=4.30, ¢=0.0, 2: ¢=0.09, 3: ¢=0.20, 4: ¢=0.64, 5: ¢=0.84, and
6: ¢=1.40.

tically does not change its radius during rotation of an anvil.
For PT under compression without torsion, pressure grows in
an entire sample (which requires a significant increase in the
axial force), and the transforming region spreads in the radial
direction. Therefore, the torsion on the one hand promotes
PT in the high-pressure region of the sample, and on the
other hand it limits the region of the sample, where PT oc-
curs. Without torsion, a high-pressure phase may propagate
throughout the whole sample. With a noticeable torsion, pla-
teau is observed in the area of diffuse phase interface, which
is located between p? and p’. This allows us to identify these
two key material parameters in experiment. In experiments a
plateau is observed during compression as well’™ and pres-
sure at the plateaus is reduced after torsion. However, we did
not observe plateaus under compression for o,, = o, which
may be because of relatively slow kinetics or some missing
physics in the model.

PT spreads in the radial direction faster without torsion,
than with torsion [Figs. 10(b) and 11(b)]. However, PT
progresses faster along the height of a sample with torsion.
Also, under compression up to the highest force under con-
sideration, PT does not complete in any region. In contrast,
torsion significantly intensifies PT in the region where p
> pg and leads to complete PT there. At maximum pressure
p=20.1, PT occurs (although it is not yet complete) in the
region r/R<<0.68 at F=7.21 under compression and is com-
plete PT in the region r/R<<0.44 at F=4.44, and ¢=1.11 for
torsion. During torsion, the high-pressure phase flows to the
region where p <p. and reverse PT occurs. This corresponds
to experimental findings;’ see the position of the arrow indi-
cating a visible interface in Fig. S8 (Ref. 5) before and after
rotation. For compression, radial flow is less intense and
pressure grows faster, and the high-pressure phase does not
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reach the region where p<p!. It is visible in Fig. 10, a that
the torsion leads to much more intense reduction in the
sample thickness. With pressure at the center p=20.1 the
difference in the axial deformation is about 40%. From Fig.
11(b) we conclude that torsion indeed leads to a sharper
phase interface, which corresponds to experiments on KCI.”
Summarizing, torsion significantly intensifies PT and al-
lows us to complete PT at the same contact pressure at the
center under significantly lower axial force than for compres-
sion, similar to the case with oy,=0,,. The transforming re-
gion, is also smaller than for compression, both due to a
smaller region with p > pg and reduction in the sample thick-
ness during the torsion. In comparison with compression at
the same axial force (Fig. 6 in Ref. 1), torsion (Fig. 5) in-
duces complete PT almost in the entire region with p> pg.
Pressure at the center of a sample for complete PT is drasti-
cally larger than pjf and it drastically grows during torsion at
constant force (the pressure self-multiplication effect).

C. Comparison for phase transformations to a
weaker high-pressure phase

Here, the results for the PT under compression by increas-
ing force F=5.07, 5.42, and 6.11, and under torsion under
the load F=4.44 are compared for the case 0,,=0.20,;. For
all cases in Fig. 12(c), strong strain localization near the
contact surface of the sample and along the line connecting
the center of a sample with the contact surface is observed.
Accumulated plastic strain for the torsion has similar contour
lines to the ones without torsion, only with higher values, by
a factor of 1.5-2. For example, with an increase in pressure
at the center from 7.95 to 8.80 (without torsion), ¢,,,, Erows
from 11.7 to 22.1. With a similar increase in pressure due to
torsion, ¢,,,, increases from 17.4 to 41.

An irregular pressure distribution [see Figs. 12(a) and
13(a)] is observed in both cases. Under torsion, pressure at
the contact surface changes slightly for ¢ =0.32 and grows
at the center for ¢=0.64. In this region, pressure is lower
than p;’ and even p;, which arrests direct PT and causes the
reverse PT in the transformed region. At the plateau region,
pressure initially exceeded p‘é, which in combination with
large plastic strain caused complete PT [see Fig. 13(b)]. For
large rotation, pressure drops in this region, but it grows
slightly for larger r, which leads to expansion of the trans-
formed region. At the external part of the sample, pressure
does not change during rotation. In comparison, under com-
pression, pressure at the contact surface grows everywhere,
increasing the transforming region. There is a plateau under
compression in the region where PT is completed, which is
above the plateau after torsion—i.e., as in experiments for PT
Cul.'' It is significantly above the value of p? and is not
related to any characteristic pressure in the kinetic equation.
Thus, while the experimentalists used pressure at this plateau
as “PT pressure” (see Refs. 10 and 11), its interpretation does
not have any physical sense at the moment. For torsion, pres-
sure oscillates near the values p‘; and p;, which can be used
for experimental determination of these parameters. In Fig.
13(a), there are several steps on the p(r) curve corresponding
to p? and pl.
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FIG. 8. (Color online) (a) Comparison of distributions of pressure p, (b) concentration of high-pressure phase ¢, (¢) accumulated plastic
strain ¢ for compression (1, 3, and 5) and torsion (2, 4, and 6) for o, =0,;. The pressure at the contact surface at r=0 after pure compression
and torsion is the same and equal to 8.40 (1 and 2), 9.40 (3 and 4), and 10.2 (5 and 6). The dimensionless force F is 4.46 (1), 5.04 (3), 5.43
(5), and 4.44 (2, 4, and 6). Rotation angle ¢ is 0.04 (2), 0.60 (4), and 1.57 (6).

Under compression, pressure grows in the entire volume,
shifting the magenta “nontransformation” region to larger r.
For torsion, the nontransformation region is multiconnected.
The transforming region with p > p‘j is located at the center
of the sample and as a small island near the contact surface.
Compression leads to the complete PT at the contact surface
in the ring, which expands [Figs. 12(b) and 13(b)]. In the
central region, PT just started due to small plastic strains.
Under the largest force, F=6.11, there is an additional incre-
ment of concentration at the center, still not exceeding 0.3.
Under torsion, the complete PT occurs in a much narrower
ring, which slightly shifts to larger r for ¢=0.32 (i.e., both
direct and reverse PTs occur simultaneously at different sides
of the ring, due to pressure redistribution) and then expands
toward larger r for ¢=0.64. Still, the completely transformed
ring at the largest ¢=0.64 is smaller than that for the smallest
force, F=5.07, under compression. Phase interfaces for all
cases are quite sharp due to drastic localization of plastic
strain. In the volume, the regions with fully transformed ma-
terial are larger for compression than for torsion. For com-
pression, it is a single connected region localized along the

shear band that grows due to pressure growth. For torsion,
this is a region at the center of a sample and a thin ring near
the contact surface, separated by a no-transformation region
and a region with p <p?, where reverse PT occurs. Due to a
larger reduction in thickness under torsion, the total amount
of transformed phase is significantly larger for compression,
which may be important for a obtaining strong signal in an
X-ray experiment.

Summarizing, for the PT to the weaker phase, pressure at
the plateau (which corresponds to the completely trans-
formed region near the contact surface) reduces during the
torsion, both in the above calculations and in
experiments,'®!" which was interpreted by the experimental-
ist as a reduction in PT pressure due to plastic shear. How-
ever, pressure at the plateau is higher than pfof and does not
correspond to any characteristic pressure, so its reduction
during rotation to the values p? and p”, does not prove that
PT pressure reduces. Recall that the notion of PT pressure for
strain-induced PT is not defined because it can occur at any
pressure above p.. On the contrary, our calculations shows
that torsion in this case does not promote strain-induced PT,
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FIG. 9. (Color online) (a) Comparison of distributions of pres-
sure p and (b) concentration of high-pressure phase ¢ for compres-
sion (1, 3, and 5) and torsion (2, 4, and 6) for o,,=0,;. The pres-
sure at the contact surface at r=0 after pure compression and
torsion is the same and equal to 8.40 (1 and 2), 9.40 (3 and 4), and
10.2 (5 and 6). Dimensionless applied axial force F is 4.46 (1), 5.04
(3), 5.43 (5), and 4.44 (2, 4, 6). Rotation angle ¢ is 0.04 (2), 0.60
(4), and 1.57 (6).

because at the same maximum pressure in the center of a
sample, it leads to complete PT in a smaller region, due to
both pressure redistribution and reduction in the sample
thickness. However, axial force in these calculations is
smaller for the case with torsion.
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V. COMPARISON WITH A SIMPLIFIED MODEL

In Refs. 12 and 13, the only analytical study of strain-
induced PTs is performed. The main equation for analysis of
experiments under compression and compression with tor-
sion and for analytical treatment is the simplified equilibrium
equation'>!3

dpldr=-27,(h/2)/h, (2)

where 7,,(h/2) is the radial friction stress at the contact. The
theory in Refs. 12 and 13 considers a cylindrical sample only
(r=R), i.e., part of the force and torque related to the exter-
nal part of a sample r>R with their evolution being ne-
glected. The condition 7=, is assumed along the entire con-
tact surface and it is assumed that the angle of inclination of
the vector of friction stress 7 to the radius is independent of
r. Equation (1) is also utilized. For compression, 7,.(h/2)
=1,. For torsion under constant load, Eq. (2) was reduced in
Refs. 12 and 13 to

dp 21, 3)
dr ho ’

where Ay is the sample thickness at the beginning of rotation.
Since hy=const, Eq. (3) coincides with the equilibrium equa-

([

i

FIG. 10. (Color online) (a) Comparison of distributions of pressure p, (b) concentration of high-pressure phase ¢, (¢) accumulated plastic
strain ¢ for compression (1, 3, and 5) and torsion (2, 4, and 6) for 0y,=50y;. The pressure at the contact surface at r=0 after pure
compression and torsion is the same and equal to 12.4 (1 and 2), 16.2 (3 and 4), and 20.1 (5 and 6). Dimensionless force F is 5.47 (1), 6.26
(3), 7.21 (5), and 4.44 (2, 4, and 6). Rotation angle ¢ is 0.20 (2), 0.52 (4), and 1.11 (6).
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FIG. 11. (Color online) (a) Comparison of distributions of pres-
sure p and (b) concentration of high-pressure phase ¢ for compres-
sion (1, 3, and 5) and torsion (2, 4, and 6) for gy,=50,,. The
pressure at the contact surface at r=0 after pure compression and
torsion is the same and equal to 12.4 (1 and 2), 16.2 (3 and 4), and
20.1 (5 and 6). Dimensionless applied axial force F is equal to 5.47
(1), 6.26 (3), 7.21 (5), and 4.44 (2, 4, and 6). Rotation angle ¢ is
equal to 0.20 (2), 0.52 (4), and 1.11 (6).

tion for compression under the same force F. Since the yield
strength does not change in the nontransformed (ie., 7,
=7,) and fully transformed (i.e., 7,=17,,) parts, the solution
to Eq. (3) represents the piecewise linear pressure distribu-
tion. Also, for oy =0y, the pressure distribution is indepen-

dent of the rotation of an anvil. It is clear from Fig. 3(a) that
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for o, =0y,, pressure distribution is indeed independent of ¢
in the region where 7=1,. Also, Eq. (3) gives practically the
same slope as the FEM solution: (a) for oy,;=0y,, (b) in
nontransformed region o,,=0.20y; and 0,;=0,,, and (c) in
the fully transformed regions for oy,=50,; [see Figs. 3(a),
5(a), and 7(a)]. Note that in experiments for NaCl in Ref. 7
and for stainless steel in Ref. 8, the independence of the
pressure distribution of ¢ was found for the case without PT.
However, there is no, any, correspondence between analyti-
cal and FEM solutions in the transforming region for o,
=0.20y, [Fig. 7(a)], which implies that Eq. (2) is not appli-
cable for the case with strong plastic strain and concentra-
tion localization. In particular, it was expected that pressure
reduces at the center due to reduction in the yield strength
but it starts to grow at some torsion stage. Equation (2) im-
plies that zero pressure gradient at the plateau of the pressure
distribution corresponds to 7,,(h/2)=0, which does not cor-
respond to our FEM results [see Figs. 5(a) and 7(a)]. This
means that Eq. (2) is not valid in the regions with a large
gradient of concentration and, consequently, plastic proper-
ties of phases.

There were several attempts to explain zero pressure gra-
dient based on Eq. (2). Thus, it was assumed in Ref. 14 that
0,=0 in the plateau region during the PT. However, this
contradicts numerous stress-strain curves for transformation-

FIG. 12. (Color online) (a) Comparison of distributions of pressure p, (b) concentration of high-pressure phase c, (¢) accumulated plastic
strain ¢ for compression (1, 3, and 5) and torsion (2, 4, and 6) for 0,,=0.20,,. The pressure at the contact surface at r=0 after pure
compression and torsion is the same and equal to 7.95 (1 and 2), 8.10 (3 and 4), and 8.80 (5 and 6). Dimensionless force F is 5.07 (1), 5.42
(3), 6.11 (5), and 4.44 (2, 4, and 6). Rotation angle ¢ is 0.20 (2), 0.32 (4), and 0.64 (6).
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FIG. 13. (Color online) (a) Comparison of distributions of pressure p and (b) concentration of high-pressure phase ¢ for compression (1,
3, and 5) and torsion (2, 4, and 6) for 0,,=0.20y;. The pressure at the contact surface at r=0 after pure compression and torsion is the same
and equal to 7.95 (1 and 2), 8.10 (3 and 4), and 8.80 (5 and 6). Dimensionless applied axial force F is equal to 5.07 (1), 5.42 (3), 6.11 (5),
and 4.44 (2, 4, and 6). Rotation angle ¢ is equal to 0.20 (2), 0.32 (4), and 0.64 (6).

induced plasticity (TRIP) steels during strain-induced PT."
Another assumption leading to 7,.(h/2)=0 was that the ra-
dial velocity at diffuse phase interface is zero due to the
volume decrease during PT, which is not supported by our
study. Also, an analytical model'>!3 demonstrates the possi-
bility of reduction in 7,.(2/2)=0 during torsion up to zero
due to TRIP. Should we include TRIP in our model, it may
indeed lead to relaxation of shear stresses and to the appear-
ance of a plateau in cases, in which we did not observe it.

The combination of Egs. (24) and (25) from Ref. 13 leads
to the following equation connecting the angle of rotation of
an anvil and reduction in thickness during torsion,

1+0.204m | [h]
¢="020am V7

h
—-1- arccos—), (4)
0.204m hy

where m=R/H, and PTs were neglected. Superposing this
plot (for m=5) on the results of FEM simulation (Fig. 14),
we find that it significantly higher. At the same time, it de-
scribes well FEM results without PTs.? It is not surprising
because Eq. (4) does not take into account volumetric trans-
formation strain equal to 0.1. However, deviation is larger
than can be expected based on this strain. That means that
volume change induces additional plastic flow called TRIP.

VI. COMPARISON WITH AND INTERPRETATION
OF EXPERIMENTS

Below, the cases with qualitative correspondence between
our simulations and experiments are presented. Since we
used generic properties in our model and aimed to obtain
results valid for a broad class of materials, rather than prop-
erties for specific materials (which are unknown), quantita-
tive comparison is impossible.

(a) Experimentally observed plateaus in the pressure-
distribution curve have been reproduced in our calculation.
For 0,,=50,,, the plateau under torsion corresponds to the
dlffuse interface, as it was observed in experiments for KCI
and fullerene Cg,.”° However, we were unable to reproduce
the same steps for compression. It may appear for a different

choice of kinetic parameters; otherwise, some physics (for
example, TRIP) is missing in the model. For 0,,=0.20,,, we
succeeded in reproducing the steps both for compressmn and
torsion, which were observed in experiments for ZnSe (Fig.
S9) (Refs. 5 and 10) and Cul.!!

(b) The irregular pressure distribution at the contact sur-
face obtained for oy,=0.20,, corresponds to experiments for
ZnSe (Fig. S9) (Refs. 5 and 10) and Cul.!'! The smooth pres-
sure distribution obtained for o,,=50,, agrees with results
for KCI (Ref. 7) and fullerene C60.8 9

We should mention the smooth pressure plots for PT from
the semiconducting phase III to the weaker metallic phase 11
in Ge and Si.'®!” There are multiple PTs in these systems,
including PTs from semiconducting phase I to the probably
stronger, high-pressure semiconducting phase III (see our
model in Ref. 18), which may lead to a smooth curve.

(c) Torsion leads to a sharper phase interface, which cor-
responds to experiments on KC1.7 (d) A reduction in sample
thickness during torsion under constant load is observed in
Refs. 6 and 8.

(e) A slight increase in contact pressure at the center of a
sample during PT in ZnSe (Fig. S9) (Refs. 5 and 10) under

% —— 0
0 80- —— ]
' —= 3
0.6 — 1
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FIG. 14. (Color online) Change in relative thickness //h, of the
sample vs angle of rotation ¢ for (1) oyp,=0y, (2) 0y,=50,;, and
(3) 0,,=0.20,,, and (0) according to Eq. (4)
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torsion supports our results for o, <oy and large rotation
(while it contradicts a simplified model). Pressure at the cen-
ter of sample reduces during torsion of Si,'® which corre-
sponds to our results for oy, <o, and small rotation and
may also be caused by a pressure increase at the periphery
due to PT I—1II. The reduction in pressure for PT in Cul
(Ref. 11) cannot be compared with the current work because
of the use of a gasket.

(f) During torsion, high-pressure phase flows to the region
where p<p’ and reverse PT occurs, which is confirmed by
experiment for KCl1 in Ref. 7 [Fig. S8 (Ref. 5)]. (g) In Ref.
19, PT from strong semiconducting Si I to weaker metallic Si
IT under compression in diamond anvils was found in a thin
contact layer only but not in the bulk, which agrees with our
simulation in Fig. 12(a). This coincidence also confirms the
possibility of strain-induced (rather than pressure-induced)
PT under compression without torsion.'

(h) For the case with increasing yield strength, during
torsion the pressure grows significantly in the transforming
region. Such a pressure growth despite the volume decrease
due to PT does not contradict to the Le Chatelier principle
because the thermodynamics of heterogeneous strain-
induced PTs differs significantly from classical
thermodynamics.'>!3 This result corresponds to the experi-
mentally observed pressure self-multiplication effect.®~ The
decrease in sample thickness during torsion compensates for
the transformation-induced volume decrease and higher yield
strength leads to the increase in pressure.

The following results have important consequence for in-
terpretation of experiments. (a) The essential heterogeneity
in concentration of the high-pressure phase (due to localiza-
tion of plastic strain and strong radial heterogeneity in pres-
sure) causes a significant problem in quantitative character-
ization of strain-induced PTs. There are two main
experimental approaches to measure the concentration of a
high-pressure phase in local points.®!%2? X-ray diffraction
allows us to measure the concentration of the high-pressure
phase averaged over the thickness of a sample. In contrast,
the Raman method gives concentration averaged over the
thin layer near the sample contact surface. Consequently, dif-
ferent measurement techniques will give different PT kinet-
ics. This indeed was observed in experiments in Ref. 19,
where PT from Si I to Si II under compression in diamond
anvils was confirmed by the Raman method in a thin contact
layer while PT did not occur in the bulk.

(b) The reduction in sample thickness during torsion leads
to intense radial flow of the high-pressure phase to the low-
pressure region, where the reverse strain-induced PT occurs.
Thus, in experiment, the high-pressure phase may be found
at a low pressure, at which it cannot be obtained due to PT.
This may lead to incorrect numerical data for PT pressure
and to overestimation of the effect of plastic deformation on
PTs in general.

(c) The total amount of high-pressure phase and the
amount of high-pressure phase for each r, is significantly
larger for compression than for torsion, due to a smaller re-
duction in thickness. This may be important for obtaining a
strong signal in x-ray experiments.

(d) Equation (2) was routinely used for interpretation of
data on pressure distribution. We found that in combination

PHYSICAL REVIEW B 82, 174124 (2010)

with the analytical model'?!3 it reproduces well the p(r) dis-

tribution in the nontransforming zone for all combinations of
the yield strengths; it describes well p(r) for o, =0, and its
independence of the rotation angle; it also describes p(r) in
the completely transformed region for o,=50,;. However,
this model, and, in particular, Eq. (2), are not applicable for
the case with oy,=0.20y; and at the plateau of the pressure
distribution for o,,=50,,. In both cases, due to large gradi-
ents of concentration of the high-pressure phase, a large gra-
dient of the yield strength makes Eq. (2) inapplicable. This is
a very important result because Eq. (2) leads to wrong intu-
ition and formulation of a wrong problem on why condition
7,.(h/2)=0 is held in the diffuse interface region. We found
that 7,.(h/2) # 0 in this region while dp/dr=0.

(e) The value of pressure at the plateau (step) of the ex-
perimental pressure distribution is currently used as the PT
pressure, without exact understanding of what it means. In
particular, in Ref. 7 it was identified as phase-equilibrium
pressure, with the following arguments. First, a zero pressure
gradient corresponds according to Eq. (2) to zero shear
stress, i.e., to a hydrostatic condition. Second, plastic shear
decreases plastic hysteresis, and since in Ref. 7 the pressure
at the step was the same for direct and reverse PT, then
pressure at the step is the phase-equilibrium pressure. The
inconsistency of this consideration is discussed in Refs. 12
and 13 and is related to the fundamental difference between
pressure-induced and strain-induced PTs. Strain-induced PT
cannot be characterized by a specific pressure because it can
occur at any pressure above pf. Ideally, it should be charac-
terized by the kinetic relationship c=f(p,q,c). Based on our
simulation and available experimental methods (Raman and
x ray) for determination of the concentration of the high-
pressure phase, it is very difficult to do this due to heteroge-
neity in concentration, plastic strain, and pressure distribu-
tion and their variation during the loading increment. It may
be much easier to determine kinetics from the experiments,
when the sample is placed in a gasket with geometric param-
eters that result in quasihomogeneous pressure and concen-
tration distributions along the radius with small variation
during torsion.® An FEM study of this problem will be per-
formed in the future to find the heterogeneity along the z
direction and possibility to extract kinetic data from coupled
experiments and simulations. Yet, we can consider the more
modest problem of interpretation of values of pressure at the
steps and determination of characteristic p? and p” in the
kinetic equation. Our simulations show that for o,, > o, and
under torsion, the pressure at the steps varies between p‘; and
p., and these parameters can be approximately determined
from experiment. For more precise conclusion, our simula-
tions will be repeated in the future for a larger difference
between p? and p. and for p?<p.. Thus, based on data in
Ref. 7, we can conclude that for KCl p?=p”=1.8 GPa.
For 0y,=0.20y,, the situation is much more sophisticated.
A large plateau and small steps exist under both compression
and torsion, similar to experiments.'®!" A plateau under tor-
sion corresponds to pg when PT is completed at the contact
surface. Further rotation leads to a pressure increase at the
plateau, which is not related to PT. Small steps evolve, and
the pressure at them varies between p¢ and p!, decreasing
below p. at further rotation. Thus, one may be able to deter-
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mine p? and p’, from experiment at the initial stage of rota-
tion but it is not simple to determine at which rotation angle
this stage ends. Under compression, a plateau appears when
PT is completed in a ring at the contact surface and it is
above the plateau after torsion, again similar to experiments
for ZnSe (Fig. S9) (Refs. 5 and 10) and Cul.!! Since pressure
at the plateau is above p’:, it is determined by the mechanics
of plastic flow coupled with PT rather than by PT-related
characteristics. In compression experiment for o, > o, the
plateau is also above the plateau after torsion,”™ i.e., above
p?, which means that it also is not connected directly to
PT-related characteristics.

We conclude that for torsion and o, > o, the pressure at
plateaus varies between p¢ and p’ and can be used for ex-
perimental determination of these parameters. For torsion
and 0, <0, the steps and plateau correspond to pfj and p7,
but it is not easy to distinguish them from steps and plateaus
that are not PT related. For compression for any o, pressure
at the steps does not correspond to any PT-related parameter.

(f) Usually, the conclusion that plastic strain reduces the
PT pressure comes from a reduction in pressure at plateaus
during torsion. Since the concept of the PT pressure is not
well defined for strain-induced PTs (which can occur at any
pressure above pg) and pressure at compression is not di-
rectly related to characteristic PT pressure, this statement,
while generally correct, does not follow from such an experi-
ment. On the other hand, the possibility of strain-induced PT
near the plateau region at pressure as low as p= pg, does
prove the plastic strain-induced reduction in pressure and
allows us to quantify it.

VII. CONCLUDING REMARKS

In this two-part paper, a 3D model for strain-induced PTs
is developed, a computational procedure for the solution of a
corresponding boundary-value problem is described, and
FEM simulations of PTs under compression and torsion at
fixed axial force in rotational anvil cell are performed. For all
cases under study under compression in Ref. 1 and torsion
here: (a) PT starts at the center of a sample, where the con-
dition p> p‘j is first met and where there is some strain lo-
calization; (b) another local maximum in concentration ¢ was
found along the contact surface in the region with intense
localized plastic flow; (c) PT in both transforming regions
completes and these zones coalesce (except for compression
with torsion for ¢,=0.20;); (d) PT can be completed in
almost the entire regions where p> pg for torsion for any
yield strength and for compression for 0,,=0.20,;; (e) the
magnitude of friction stresses 7 in a single-phase region
reaches a corresponding yield strength in shear in the major
part of a sample; (f) for oy, # gy, there is a sharp change in
shear stresses 7,. and 7,, at a diffuse interface.

More detailed analysis is summarized at the end of each
section. Comparison with a simplified model and experi-
ments is given in Secs. V and VI. The impact of our simu-
lations on the possibility of complete or partial characteriza-
tion of strain-induced PTs is discussed in Sec. VI
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Torsion significantly reduces the axial force (for the same
pressure at the center) for complete PT for oy,=0,, and
especially for o,,=50,;, which is important if the experi-
ment is conducted at the limit of anvil strength. However, the
transformed region is smaller during the torsion, both due to
a smaller region with p > p‘j and a reduction in sample thick-
ness during the torsion. When comparing at the same axial
force, torsion allows one to drive PT to completion almost in
the entire region with p > pg. Surprisingly, torsion suppresses
PT for 0,=020y, i.e., it reduces the volume of the fully
transformed high-pressure phase, while only slightly reduc-
ing the axial force. Consequently, research on strain-induced
PTs to a weaker phase does not require rotational anvils. It
can be performed in traditional anvils, which drastically ex-
pands the opportunity for experimental studies on this phe-
nomenon.

For the chosen volumetric transformation strain &,=0.1
and kinetics, shear stress 7,, does not change the sign, and
there is no radial flow to the center of a sample. This result
changes the generally accepted wisdom [based on Eq. (2)]
that the maximum in pressure distribution corresponds to
zero sliding radial velocity and that material flows radially in
the direction of the pressure gradient.'®!>!3 For larger volu-
metric strain and faster kinetics, we may obtain radial flow to
the center, as it was observed in experiments.'®

The obtained results change the basic knowledge and in-
tuition in interpretation of experimentally observed phenom-
ena. They lead to better understanding of results of measure-
ments and the methods of extracting of information on
material constitutive equations from the sample behavior.
They also represent a computational framework for design-
ing experiments for various objectives and for controlling
(promoting or suppressing) PTs for various applications, and
they show the potential to completely characterize strain-
induced PTs. Nontrivial effects are caused by multiple non-
linearities (due to large strains and material rotations, and
nonlinearities in equations for plastic flow, PT kinetics, and
contact friction) and by strong coupling between plasticity,
PT, and contact friction.

Some of our conclusions are generic but some may
change if a more sophisticated model or a different combi-
nation of material parameters is used. That is why in future
work we will vary the kinetic coefficients (making them also
different for direct and reverse PTs) and consider case p.
> pz, when simultaneous direct and reverse PTs occur in a
single material point (representative volume). In the direc-
tion of further development of the model, the kinetic equa-
tion that takes into account the effect of evolving defects on
PT (see Ref. 6) will be utilized, and superposition of strain-
induced and pressure-induced PT will be taken into account.
Allowing for pressure dependence of the elastic properties
and the yield strength, large elastic and transformation
strains, deviatoric transformation strain, and transformation-
induced plasticity and will further improve the model and the
results. Unloading, torsion at a lower load when plastic flow
does not start at the center of a sample during compression
and complex compression-torsion-unloading-reloading his-
tory will be considered as well. Numerical treatment of the
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contact problem for a sample with a gasket leading to a
quasihomogeneous pressure distribution in a sample® will be
performed with the goal of a developing robust method to
extract PT kinetics from experiments.
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