1,777 research outputs found

    Nature-Inspired Interconnects for Self-Assembled Large-Scale Network-on-Chip Designs

    Get PDF
    Future nano-scale electronics built up from an Avogadro number of components needs efficient, highly scalable, and robust means of communication in order to be competitive with traditional silicon approaches. In recent years, the Networks-on-Chip (NoC) paradigm emerged as a promising solution to interconnect challenges in silicon-based electronics. Current NoC architectures are either highly regular or fully customized, both of which represent implausible assumptions for emerging bottom-up self-assembled molecular electronics that are generally assumed to have a high degree of irregularity and imperfection. Here, we pragmatically and experimentally investigate important design trade-offs and properties of an irregular, abstract, yet physically plausible 3D small-world interconnect fabric that is inspired by modern network-on-chip paradigms. We vary the framework's key parameters, such as the connectivity, the number of switch nodes, the distribution of long- versus short-range connections, and measure the network's relevant communication characteristics. We further explore the robustness against link failures and the ability and efficiency to solve a simple toy problem, the synchronization task. The results confirm that (1) computation in irregular assemblies is a promising and disruptive computing paradigm for self-assembled nano-scale electronics and (2) that 3D small-world interconnect fabrics with a power-law decaying distribution of shortcut lengths are physically plausible and have major advantages over local 2D and 3D regular topologies

    Phase resolved spectroscopy and Kepler photometry of the ultracompact AM CVn binary SDSS J190817.07+394036.4

    Get PDF
    {\it Kepler} satellite photometry and phase-resolved spectroscopy of the ultracompact AM CVn type binary SDSS J190817.07+394036.4 are presented. The average spectra reveal a variety of weak metal lines of different species, including silicon, sulphur and magnesium as well as many lines of nitrogen, beside the strong absorption lines of neutral helium. The phase-folded spectra and the Doppler tomograms reveal an S-wave in emission in the core of the He I 4471 \AA\,absorption line at a period of Porb=1085.7±2.8P_{\rm orb}=1085.7\pm2.8\,sec identifying this as the orbital period of the system. The Si II, Mg II and the core of some He I lines show an S-wave in absorption with a phase offset of 170±15170\pm15^\circ compared to the S-wave in emission. The N II, Si III and some helium lines do not show any phase variability at all. The spectroscopic orbital period is in excellent agreement with a period at Porb=1085.108(9)P_{\rm orb}=1085.108(9)\,sec detected in the three year {\it Kepler} lightcurve. A Fourier analysis of the Q6 to Q17 short cadence data obtained by {\it Kepler} revealed a large number of frequencies above the noise level where the majority shows a large variability in frequency and amplitude. In an O-C analysis we measured a P˙1.0\vert\dot{P}\vert\sim1.0\,x108\,10^{-8}\,s\,s1^{-1} for some of the strongest variations and set a limit for the orbital period to be P˙<1010\vert\dot{P}\vert<10^{-10}s\,s1^{-1}. The shape of the phase folded lightcurve on the orbital period indicates the motion of the bright spot. Models of the system were constructed to see whether the phases of the radial velocity curves and the lightcurve variation can be combined to a coherent picture. However, from the measured phases neither the absorption nor the emission can be explained to originate in the bright spot.Comment: Accepted for publication in MNRAS, 15 pages, 14 figures, 5 table

    Adaptive walks on time-dependent fitness landscapes

    Full text link
    The idea of adaptive walks on fitness landscapes as a means of studying evolutionary processes on large time scales is extended to fitness landscapes that are slowly changing over time. The influence of ruggedness and of the amount of static fitness contributions are investigated for model landscapes derived from Kauffman's NKNK landscapes. Depending on the amount of static fitness contributions in the landscape, the evolutionary dynamics can be divided into a percolating and a non-percolating phase. In the percolating phase, the walker performs a random walk over the regions of the landscape with high fitness.Comment: 7 pages, 6 eps-figures, RevTeX, submitted to Phys. Rev.

    Inverse eigenvalue problem for discrete three-diagonal Sturm-Liouville operator and the continuum limit

    Full text link
    In present article the self-contained derivation of eigenvalue inverse problem results is given by using a discrete approximation of the Schroedinger operator on a bounded interval as a finite three-diagonal symmetric Jacobi matrix. This derivation is more correct in comparison with previous works which used only single-diagonal matrix. It is demonstrated that inverse problem procedure is nothing else than well known Gram-Schmidt orthonormalization in Euclidean space for special vectors numbered by the space coordinate index. All the results of usual inverse problem with continuous coordinate are reobtained by employing a limiting procedure, including the Goursat problem -- equation in partial derivatives for the solutions of the inversion integral equation.Comment: 19 pages There were made some additions (and reformulations) to the text making the derivation of the results more precise and understandabl

    Ethnic differences in bowel cancer awareness: findings from a pharmacy-based community survey

    Get PDF

    Small-Energy Analysis for the Selfadjoint Matrix Schroedinger Operator on the Half Line

    Full text link
    The matrix Schroedinger equation with a selfadjoint matrix potential is considered on the half line with the most general selfadjoint boundary condition at the origin. When the matrix potential is integrable and has a first moment, it is shown that the corresponding scattering matrix is continuous at zero energy. An explicit formula is provided for the scattering matrix at zero energy. The small-energy asymptotics are established also for the corresponding Jost matrix, its inverse, and various other quantities relevant to the corresponding direct and inverse scattering problems.Comment: This published version has been edited to improve the presentation of the result

    Genuine converging solution of self-consistent field equations for extended many-electron systems

    Full text link
    Calculations of the ground state of inhomogeneous many-electron systems involve a solving of the Poisson equation for Coulomb potential and the Schroedinger equation for single-particle orbitals. Due to nonlinearity and complexity this set of equations, one believes in the iterative method for the solution that should consist in consecutive improvement of the potential and the electron density until the self-consistency is attained. Though this approach exists for a long time there are two grave problems accompanying its implementation to infinitely extended systems. The first of them is related with the Poisson equation and lies in possible incompatibility of the boundary conditions for the potential with the electron density distribution. The analysis of this difficulty and suggested resolution are presented for both infinite conducting systems in jellium approximation and periodic solids. It provides the existence of self-consistent solution for the potential at every iteration step due to realization of a screening effect. The second problem results from the existence of continuous spectrum of Hamiltonian eigenvalues for unbounded systems. It needs to have a definition of Hilbert space basis with eigenfunctions of continuous spectrum as elements, which would be convenient in numerical applications. The definition of scalar product specifying the Hilbert space is proposed that incorporates a limiting transition. It provides self-adjointness of Hamiltonian and, respectively, the orthogonality of eigenfunctions corresponding to the different eigenvalues. In addition, it allows to normalize them effectively to delta-function and to prove in the general case the orthogonality of the 'right' and 'left' eigenfunctions belonging to twofold degenerate eigenvalues.Comment: 12 pages. Reported on Interdisciplinary Workshop "Nonequilibrium Green's Functions III", August 22 - 26, 2005, University Kiel, Germany. To be published in Journal of Physics: Conference Series, 2006; Typos in Eqs. (37), (53) and (54) are corrected. The content of the footnote is changed. Published version available free online at http://www.iop.org/EJ/abstract/1742-6596/35/1/01
    corecore